相關(guān)習(xí)題
 0  235462  235470  235476  235480  235486  235488  235492  235498  235500  235506  235512  235516  235518  235522  235528  235530  235536  235540  235542  235546  235548  235552  235554  235556  235557  235558  235560  235561  235562  235564  235566  235570  235572  235576  235578  235582  235588  235590  235596  235600  235602  235606  235612  235618  235620  235626  235630  235632  235638  235642  235648  235656  266669 

科目: 來源: 題型:選擇題

9.在平行六面體ABCD-A1B1C1D1中,化簡$\overrightarrow{AB}+\overrightarrow{C{C_1}}-\overrightarrow{DB}$為(  )
A.$\overrightarrow{A{C}_{1}}$B.$\overrightarrow{C{A}_{1}}$C.$\overrightarrow{A{D_1}}$D.$\overrightarrow{{D_1}A}$

查看答案和解析>>

科目: 來源: 題型:選擇題

8.雙曲線$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{12}$=1的離心率為( 。
A.2$\sqrt{3}$B.$\sqrt{7}$C.$\sqrt{3}$D.3

查看答案和解析>>

科目: 來源: 題型:選擇題

7.下列函數(shù)中,導(dǎo)函數(shù)是奇函數(shù)的是(  )
A.y=cosxB.y=exC.y=lnxD.y=ax

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知在空間四邊形ABCD中,$\overrightarrow{AB}=\vec a$,$\overrightarrow{BC}=\vec b$,$\overrightarrow{AD}=\vec c$,則$\overrightarrow{CD}$=( 。
A.$\vec a+\vec b-\vec c$B.$\vec c-\vec a-\vec b$C.$\vec c+\vec a-\vec b$D.$\vec a+\vec b+\vec c$

查看答案和解析>>

科目: 來源: 題型:選擇題

5.過拋物線y2=4ax(a>0)的焦點F作斜率為-1的直線l,l與離心率為e的雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({b>0})$的兩條漸近線的交點分別為B,C.若xB,xC,xF分別表示B,C,F(xiàn)的橫坐標(biāo),且$x_F^2=-{x_B}•{x_C}$,則e=( 。
A.6B.$\sqrt{6}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

4.設(shè)a,b∈R,函數(shù)f(x)=ax+b(0≤x≤1),則f(x)>0恒成立是a+2b>0成立的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.即不充分也不必要條件

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知$α∈({\frac{π}{2},\frac{3π}{2}}),tan({α-π})=-\frac{3}{4}$,則sinα+cosα的值是(  )
A.$±\frac{1}{5}$B.$\frac{1}{5}$C.$-\frac{1}{5}$D.$-\frac{7}{5}$

查看答案和解析>>

科目: 來源: 題型:填空題

2.已知等比數(shù)列{an}中,a1=1,a4=8,則其前6項之和為63.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2-2x,0≤x<1}\\{lnx,1≤x≤e}\end{array}\right.$.
(1)求f(f($\sqrt{e}$));
(2)若x0滿足f(f(x0))=x0,且f(x0)≠x0,則稱x0為f(x)的二階不動點,求函數(shù)f(x)的二階不動點的個數(shù).

查看答案和解析>>

科目: 來源: 題型:解答題

20.如圖所示的莖葉圖記錄了甲、乙兩組各5名同學(xué)的投籃命中次數(shù),乙組記錄中有一個數(shù)據(jù)模糊,無法確認(rèn),在圖中用x表示.
(1)若乙組同學(xué)投籃命中次數(shù)的平均數(shù)比甲組同學(xué)的平均數(shù)少1,求x及乙組同學(xué)投籃命中次數(shù)的方差;
(2)在(1)的條件下,分別從甲、乙兩組投籃命中次數(shù)低于10次的同學(xué)中,各隨機(jī)選取一名,求這兩名同學(xué)的投籃命中次數(shù)之和為16的概率.

查看答案和解析>>

同步練習(xí)冊答案