相關(guān)習(xí)題
 0  235394  235402  235408  235412  235418  235420  235424  235430  235432  235438  235444  235448  235450  235454  235460  235462  235468  235472  235474  235478  235480  235484  235486  235488  235489  235490  235492  235493  235494  235496  235498  235502  235504  235508  235510  235514  235520  235522  235528  235532  235534  235538  235544  235550  235552  235558  235562  235564  235570  235574  235580  235588  266669 

科目: 來源: 題型:選擇題

7.如圖,四邊形ABCD為距形,AB=$\sqrt{3}$,BC=1,以A為圓心,AD為半徑畫圓,交線段AB于E,在圓弧DE上任取一點P,則直線AP與線段BC有公共點的概率為(  )
A.$\frac{\sqrt{3}π}{12}$B.$\frac{12-\sqrt{3}π}{12}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

6.下列四個命題中真命題為( 。
A.lg(x2+1)≥0B.5≤2C.若x2=4,則x=2D.若x<2,則$\frac{1}{x}$>$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知集合M={x|(x+2)(x-3)≤0},N={-3,-1,1,3,5},則M∩N=( 。
A.{1,3}B.{-3,-1,1}C.{-3,1}D.{-1,1,3}

查看答案和解析>>

科目: 來源: 題型:解答題

4.如圖,橢圓C0:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0,a,b為常數(shù)),動圓C1:x2+y2=t12,b<t1<a..點A1,A2分別為C0的左,右頂點,C1與C0相交于A,B,C,D四點.
(1)若C1經(jīng)過C0的焦點,且C0離心率為$\frac{\sqrt{6}}{3}$,求∠DOC的大小;
(2)設(shè)動圓C2:x2+y2=t22與C0相交于A′,B′,C′,D′四點,其中b<t2<a,t1≠t2.若t12+t22=a2+b2,證明:矩形ABCD與矩形A′B′C′D′的面積相等.

查看答案和解析>>

科目: 來源: 題型:解答題

3.如圖,斜三棱柱ABC-A1B1C1的底面是直角三角形,∠ACB=90°,M是BC的中點,且BM1⊥BC,平面B1C1CB⊥平面ABC.BC=CA=AA1
(1)求證:平面ACC1A1⊥平面B1C1CB;
(2)求二面角B-AB1-C1的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

2.某校從高二年級學(xué)生中隨機抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如圖的頻率分布直方圖.
(1)求圖中實數(shù)a的值;
(2)若該校高二年級共有學(xué)生640人,試估計該校高二年級期中考試數(shù)學(xué)成績不低于40分的人數(shù);
(3)若從樣本中隨機選取數(shù)學(xué)成績在[40,50)與[90,100]兩個分?jǐn)?shù)段內(nèi)的兩名學(xué)生,求這兩名學(xué)生的數(shù)學(xué)成績之差的絕對值大于10的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

1.某航運公司有6艘可運載30噸貨物的A型貨船與5艘可運載50噸貨物的B型貨船,現(xiàn)有每天至少運載900噸貨物的任務(wù),已知每艘貨船每天往返的次數(shù)為A型貨船4次和B型貨船3次,每艘貨船每天往返的成本費為A型貨船160元,B型貨船252元,那么,每天派出A型貨船和B型貨船各多少艘,公司所花的成本費最低?

查看答案和解析>>

科目: 來源: 題型:解答題

20.設(shè)命題p:?x∈R,x2-ax+1≥0,命題q:?x>0,$\frac{{x}^{2}+1}{x}$<a,若(¬p)∨q是真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

19.函數(shù)y=$\frac{{x}^{2}+2x+1}{{x}^{2}+4x}$(x>0)的最小值是$\frac{3}{4}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知四面體ABCD各棱長都等于1,點E,F(xiàn)分別是AB,CD的中點,則異面直線AF與CE所成角的余弦值為(  )
A.-$\frac{2}{3}$B.$\frac{2}{3}$C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案