相關(guān)習(xí)題
 0  235314  235322  235328  235332  235338  235340  235344  235350  235352  235358  235364  235368  235370  235374  235380  235382  235388  235392  235394  235398  235400  235404  235406  235408  235409  235410  235412  235413  235414  235416  235418  235422  235424  235428  235430  235434  235440  235442  235448  235452  235454  235458  235464  235470  235472  235478  235482  235484  235490  235494  235500  235508  266669 

科目: 來(lái)源: 題型:解答題

8.(1)已知$cos(α+\frac{π}{6})-sinα=\frac{{3\sqrt{3}}}{5}$,求$sin(α+\frac{5π}{6})$的值;
(2)已知$sinα+sinβ=\frac{1}{2},cosα+cosβ=\frac{{\sqrt{2}}}{2}$,求cos(α-β)的值.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

7.已知函數(shù)$f(x)={2016^x}+{log_{2016}}({\sqrt{{x^2}+1}+x})-{2016^{-x}}+2$,則關(guān)于x的不等式f(3x+1)+f(x)>4的解集為(-$\frac{1}{4}$,+∞).

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

6.已知函數(shù)$f(x)=\left\{\begin{array}{l}(1-2a)x+3a,x<1\\ lnx,x≥1\end{array}\right.$的值域?yàn)镽,那么a的取值范圍是( 。
A.$[{-1,\frac{1}{2}})$B.$({-1,\frac{1}{2}})$C.(-∞,-1]D.$({-∞,\frac{1}{2}})$

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

5.設(shè)函數(shù)y=f(x)是定義在(0,+∞)上的增函數(shù),并滿足f(x,y)=f(x)+f(y),f(4)=1
(1)求f(1)的值;
(2)若存在實(shí)數(shù)m,使f(m)=2,求m的值
(3)如果f(x2-4x-5)<2求x的范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

4.如圖,已知平面ABC⊥平面BCDE,△DEF與△ABC分別是棱長(zhǎng)為1與2的正三角形,AC∥DF,四邊形BCDE為直角梯形,DE∥BC,BC⊥CD,CD=1,點(diǎn)G為△ABC的重心,N為AB中點(diǎn),$\overrightarrow{AM}=λ\overrightarrow{AF}(λ∈R,λ>0)$.
(1)當(dāng)$λ=\frac{2}{3}$時(shí),求證:GM∥平面DFN;
(2)若$λ=\frac{1}{2}$時(shí),試求二面角M-BC-D的余弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{-{x^2}+2x,x≥0}\\{-3x,x<0}\end{array}}\right.$.
(Ⅰ)畫(huà)出f(x)的圖象(無(wú)需列表),并寫(xiě)出函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)若x∈[0,a],求f(x)的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

2.計(jì)算下列各題:
(1)$\sqrt{\frac{25}{9}}+{(\frac{27}{64})^{-\frac{1}{3}}}+{π^0}+\root{3}{{{{(-8)}^2}}}$;       
(2)若10x=3,10y=4,求102x-y的值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

1.已知全集U={x∈N|1≤x≤10},A={1,2,3,5,8},B={1,3,5,7,9}.
(Ⅰ)求A∩B;               
(Ⅱ)求(∁UA)∩(∁UB).

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

20.已知函數(shù)f(x)是偶函數(shù),且f(x)在[0,+∞)上的解析式是f(x)=2x+1,則f(x)在(-∞,0)上的解析式為f(x)=-2x+1.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

19.已知下列兩種說(shuō)法:
①方程x2+mx+1=0有兩個(gè)不同的負(fù)根;
②方程4x2+4(m-2)x=1=0無(wú)實(shí)根.
(1)若①和②都成立,求實(shí)數(shù)m的范圍;
(2)若①和②中至少有一個(gè)成立,求實(shí)數(shù)m的范圍;
(3)若①和②中有且只有一個(gè)成立,求實(shí)數(shù)m的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案