相關(guān)習(xí)題
 0  235260  235268  235274  235278  235284  235286  235290  235296  235298  235304  235310  235314  235316  235320  235326  235328  235334  235338  235340  235344  235346  235350  235352  235354  235355  235356  235358  235359  235360  235362  235364  235368  235370  235374  235376  235380  235386  235388  235394  235398  235400  235404  235410  235416  235418  235424  235428  235430  235436  235440  235446  235454  266669 

科目: 來源: 題型:解答題

17.已知數(shù)列{an}的前n項和為Sn,且${S}_{n}={2}^{n+1}-2$.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=log2a1+log2a2+…+log2an,求使(n-8)bn≥nk對任意n∈N+恒成立的實數(shù)k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知△ABC中,角$B,\frac{3}{2}C,A$成等差數(shù)列,且△ABC的面積為$1+\sqrt{2}$,則AB邊的最小值是2.

查看答案和解析>>

科目: 來源: 題型:填空題

15.在[-4,3]上隨機取一個數(shù)m,能使函數(shù)$f(x)={x}^{2}+\sqrt{2}mx+2$在R上有零點的概率為$\frac{3}{7}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,過F1且與x軸垂直的直線交橢圓于A、B兩點,直線AF2與橢圓的另一個交點為C,若${S}_{△ABC}=3{S}_{△BC{F}_{2}}$,則橢圓的離心率為(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{10}}{5}$D.$\frac{3\sqrt{3}}{10}$

查看答案和解析>>

科目: 來源: 題型:選擇題

13.正四棱錐的頂點都在同一球面上,若該棱錐的高為4,底面邊長為2,則該球的體積為( 。
A.$\frac{243π}{16}$B.$\frac{81π}{16}$C.$\frac{81π}{4}$D.$\frac{27π}{4}$

查看答案和解析>>

科目: 來源: 題型:選擇題

12.若某圓柱體的上部挖掉一個半球,下部挖掉一個圓錐后所得的幾何體的三視圖中的正(主)視圖和側(cè)(左)視圖如圖所示,則此幾何體的表面積是( 。
A.(4+$\sqrt{2}$)πB.6$π+2\sqrt{2}π$C.6$π+\sqrt{2}π$D.(8+$\sqrt{2}$)π

查看答案和解析>>

科目: 來源: 題型:選擇題

11.直線y=kx+3被圓(x-2)2+(y-3)2=4截得的弦長為$2\sqrt{3}$,則直線的傾斜角為( 。
A.$\frac{π}{6}$或$\frac{5π}{6}$B.$-\frac{π}{3}$或$\frac{π}{3}$C.$-\frac{π}{6}$或$\frac{π}{6}$D.$\frac{π}{6}$

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知集合A={x|x≥3或x≤1},B={x|2<x<4},則(∁RA)∩B=( 。
A.(1,3)B.(1,4)C.(2,3)D.(2,4)

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=ax3+bx2-x+c(a,b,c∈R且a≠0).
(1)若a=1,b=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在實數(shù)x1,x2(x1≠x2)滿足f(x1)=f(x2),是否存在實數(shù)a,b,c,使f(x)在$\frac{{x}_{1}+{x}_{2}}{2}$處的切線斜率為0,若存在,求出一組實數(shù)a,b,c,否則說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

8.在直三棱柱ABC-A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E、F分別是A1C1,BC的中點.
(1)證明:AB⊥平面BB1C1C;
(2)設(shè)P是BE的中點,求三棱錐P-B1C1F的體積.

查看答案和解析>>

同步練習(xí)冊答案