相關(guān)習(xí)題
 0  235195  235203  235209  235213  235219  235221  235225  235231  235233  235239  235245  235249  235251  235255  235261  235263  235269  235273  235275  235279  235281  235285  235287  235289  235290  235291  235293  235294  235295  235297  235299  235303  235305  235309  235311  235315  235321  235323  235329  235333  235335  235339  235345  235351  235353  235359  235363  235365  235371  235375  235381  235389  266669 

科目: 來源: 題型:解答題

11.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率$e=\frac{1}{2}$,且過點Q$(1,\;\frac{3}{2})$
(1)求橢圓C的方程.
(2)橢圓C長軸兩端點分別為A,B,點P為橢圓上異于A,B的動點,定直線x=4與直線PA,PB分別交于M,N兩點,直線PA,PB的斜率分別為k1,k2
①證明${k_1}{k_2}=-\frac{3}{4}$;
②若E(7,0),過E,M,N三點的圓是否過x軸上不同于點E的定點?若經(jīng)過,求出定點坐標(biāo);若不經(jīng)過,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知曲線x2+y=8與x軸交于A,B兩點,動點P與A,B連線的斜率之積為$-\frac{1}{2}$.
(1)求動點P的軌跡C的方程.
(2)MN是動點P軌跡C的一條弦,且直線OM,ON的斜率之積為$-\frac{1}{2}$.求$\overrightarrow{OM}•\overrightarrow{ON}$的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知橢圓$C:\frac{x^2}{4}+\frac{y^2}{9}=1$,動直線$l:y=\frac{3}{2}x+m$
(1)若動直線l與橢圓C相交,求實數(shù)m的取值范圍;
(2)當(dāng)動直線l與橢圓C相交時,證明:這些直線被橢圓截得的線段的中點都在直線3x+2y=0上.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知函數(shù)f(x)=x5+2x4+x3-x2+3x-5,用秦九韶算法計算,當(dāng)x=5時,V3=( 。
A.27B.36C.54D.179

查看答案和解析>>

科目: 來源: 題型:選擇題

7.設(shè)隨機(jī)變量ξ服從標(biāo)準(zhǔn)正態(tài)分布N(0,1),在某項測量中,已知p(|ξ|<1.96=0.950,則ξ在(-∞,-1.96)內(nèi)取值的概率為(  )
A.0.025B.0.050C.0.950D.0.975

查看答案和解析>>

科目: 來源: 題型:解答題

6.一個幾何體的三視圖如圖所示,求該幾何體的表面積S和體積V.

查看答案和解析>>

科目: 來源: 題型:填空題

5.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦點分別是F1,F(xiàn)2,過F2的直線交雙曲線的漸近線于A,B兩點,若F1A垂直F2A,且$\overrightarrow{{F_2}B}=3\overrightarrow{A{F_2}}$,則雙曲線的離心率=$\frac{3}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

4.在長方體ABCD-A1B1C1D1中,AB=2$\sqrt{3}$,AD=2$\sqrt{3}$,AA1=2,BC和A1C1所成的角=45度
AA1和BC1所成的角=60度.

查看答案和解析>>

科目: 來源: 題型:填空題

3.若拋物線y2=6x上的點M到焦點的距離為10,則M到y(tǒng)軸的距離是$\frac{17}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.如圖,正方體ABCD-A1B1C1D1的棱長為1,P為BC的中點,Q為線段CC1上的動點,過點A,P,Q的平面截該正方體所得的截面記為S. 
①當(dāng)$0<CQ<\frac{1}{2}$時,S為四邊形
②截面在底面上投影面積恒為定值$\frac{3}{4}$
③不存在某個位置,使得截面S與平面A1BD垂直 
④當(dāng)$CQ=\frac{3}{4}$時,S與C1D1的交點滿足C1R1=$\frac{1}{3}$
其中正確命題的個數(shù)為   ( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案