相關(guān)習(xí)題
 0  235009  235017  235023  235027  235033  235035  235039  235045  235047  235053  235059  235063  235065  235069  235075  235077  235083  235087  235089  235093  235095  235099  235101  235103  235104  235105  235107  235108  235109  235111  235113  235117  235119  235123  235125  235129  235135  235137  235143  235147  235149  235153  235159  235165  235167  235173  235177  235179  235185  235189  235195  235203  266669 

科目: 來源: 題型:解答題

3.已知函數(shù)f(x)=lnx+x2
(1)求函數(shù)h(x)=f(x)-3x的極值;
(2)若函數(shù)g(x)=f(x)-ax在定義域內(nèi)為增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)設(shè)F(x)=2f(x)-3x2-kx(k∈R),若函數(shù)F(x)存在兩個零點(diǎn)m,n(0<m<n),且x0=$\frac{m+n}{2}$,問:函數(shù)F(x)在(x0,F(xiàn)(x0))處的切線能否平行于x軸?若能,求出該切線方程;若不能,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

2.如圖,過橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上一點(diǎn)P向x軸作垂線,垂足為左焦點(diǎn)F,A,B分別為E的右頂點(diǎn),上頂點(diǎn),且AB∥OP,|AF|=$\sqrt{2}$+1.
(1)求橢圓E的方程;
(2)過原點(diǎn)O做斜率為k(k>0)的直線,交E于C,D兩點(diǎn),求四邊形ACBD面積S的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

1.近年來,某地區(qū)為促進(jìn)本地區(qū)發(fā)展,通過不斷整合地區(qū)資源、優(yōu)化投資環(huán)境、提供投資政策扶持等措施,吸引外來投資,效果明顯.該地區(qū)引進(jìn)外來資金情況如表:
年份20122013201420152016
時間代號t12345
外來資金y(百億元)567810
(Ⅰ)求y關(guān)于t的回歸直線方程$\widehat{y}$=$\widehat$t+$\widehat{a}$;
(Ⅱ)根據(jù)所求回歸直線方程預(yù)測該地區(qū)2017年(t=6)引進(jìn)外來資金情況.
參考公式:回歸方程$\widehat{y}$=$\widehat$t+$\widehat{a}$中斜率和截距的最小二乘估計(jì)公式分別為:
$\widehat$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat$t.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.不等式x2-3x+2≤0的解集為( 。
A.[1,2]B.(-∞,1)∪(2,+∞)C.(1,2)D.(-∞,1]∪[2,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知集合A={x|$\frac{1}{4}$≤2x≤128},B={y|y=log2x,x∈[$\frac{1}{8}$,32]},
(1)求A∩B;A∪B,
(2)若D={x|x>6m+1},且(A∪B)∩D=∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.設(shè)φ∈R,則“φ=$\frac{π}{2}$”是“f(x)=cos(2x+φ)為奇函數(shù)”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來源: 題型:填空題

17.設(shè)f(x)=$\left\{\begin{array}{l}{|x-2|-2,|x|≥1}\\{\frac{1}{1+{x}^{2}},|x|<1}\end{array}\right.$,則f{[f($\frac{9}{2}$)]}=$\frac{4}{5}$.

查看答案和解析>>

科目: 來源: 題型:解答題

16.設(shè)x,y均為非零實(shí)數(shù),且滿足$\frac{xsin\frac{π}{5}+ycos\frac{π}{5}}{xcos\frac{π}{5}-ysin\frac{π}{5}}$=tan$\frac{9π}{20}$.
(1)求$\frac{y}{x}$的值;
(2)在△ABC中,若tanC=$\frac{y}{x}$,求sin2A+2cosB的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知數(shù)列{an}中,其前n項(xiàng)和Sn滿足Sn=2an-2(n∈N*).
(1)求證:數(shù)列{an}為等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)設(shè)bn=(n+1)•an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為(-1,1),則復(fù)數(shù)$\frac{z+3}{z+2}$的模為( 。
A.$\sqrt{10}$B.$\frac{\sqrt{10}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

同步練習(xí)冊答案