相關(guān)習(xí)題
 0  234960  234968  234974  234978  234984  234986  234990  234996  234998  235004  235010  235014  235016  235020  235026  235028  235034  235038  235040  235044  235046  235050  235052  235054  235055  235056  235058  235059  235060  235062  235064  235068  235070  235074  235076  235080  235086  235088  235094  235098  235100  235104  235110  235116  235118  235124  235128  235130  235136  235140  235146  235154  266669 

科目: 來(lái)源: 題型:填空題

7.設(shè)實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x+y≤6}\\{x+2y≤6}\\{x≥0,y≥0}\end{array}\right.$,則Z=max{2x+y-1,x+2y+2}的取值范圍是[-1,5].

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,且∠DAB=$\frac{π}{3}$,PA=PD,點(diǎn)E為CD邊的中點(diǎn),BD⊥PE.
(1)求證:平面PAD⊥平面ABCD;
(2)若∠APD=$\frac{π}{3}$,四棱錐P-ABCD的體積為2,求點(diǎn)A到平面PBE的距離.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

5.古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家在沙灘上用小石子排成多邊形,從而研究“多邊形數(shù)”,如圖甲的三角形數(shù)1,3,6,10,15,…,第n個(gè)三角形數(shù)為1+2+3+…+n=$\frac{n(n+1)}{2}=\frac{1}{2}{n^2}+\frac{1}{2}$n,又如圖乙的四邊形數(shù)1,4,9,16,25,…,第n個(gè)四邊形數(shù)為1+3+5+…+(2n-1)=$\frac{n(1+2n-1)}{2}={n^2}$,以此類推,圖丙的五邊形數(shù)中,第n個(gè)五邊形數(shù)為$\frac{3}{2}{n}^{2}-\frac{1}{2}n$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

4.已知拋物線y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)P是拋物線上的一點(diǎn),且其縱坐標(biāo)為4,|PF|=4.
(1)求拋物線的方程;
(2)直線l交拋物線于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),且△OAB的重心為 $(\frac{4}{3},\frac{4}{3})$,求直線l的方程.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

3.已知a2+4b2=1,則2a2+4ab的最大值為$\sqrt{2}+1$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

2.已知等差數(shù)列{an}(n∈N*)的前n項(xiàng)和為Sn,且a3=5,S3=9.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)等比數(shù)列{bn}(n∈N*),{bn}的前n項(xiàng)和為Tn,若q>0且b3=a5,T3=13,求Tn
(3)設(shè)bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=x-1-lnx.
(1)求函數(shù)f(x)的極值;
(2)對(duì)?x>0,f(x)≥bx-2恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

20.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2.若橢圓上存在點(diǎn)P使∠F1PF2=90°.則橢圓的離心率的取值范圍是$\frac{\sqrt{2}}{2}$≤e<1.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

19.函數(shù)f(x)=sin(x+$\frac{π}{6}$)cos(x+$\frac{π}{6}$),下列判斷正確的是( 。
A.f(x)的最小正周期為$\frac{π}{2}$B.f(x-$\frac{π}{6}$)是奇函數(shù)
C.f(x)的一個(gè)對(duì)稱中心為($\frac{π}{6}$,0)D.f(x)的一條對(duì)稱軸為x=$\frac{π}{6}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

18.設(shè)a,b是不同的直線,α、β是不同的平面.下列命題中正確的是( 。
A.若a⊥α,b∥β,a⊥b,則α⊥βB.若a⊥α,b∥β,a∥b,則α∥β
C.若a⊥α,a∥β,則α⊥βD.若a∥β,b∥β,則α∥b

查看答案和解析>>

同步練習(xí)冊(cè)答案