相關(guān)習(xí)題
 0  234875  234883  234889  234893  234899  234901  234905  234911  234913  234919  234925  234929  234931  234935  234941  234943  234949  234953  234955  234959  234961  234965  234967  234969  234970  234971  234973  234974  234975  234977  234979  234983  234985  234989  234991  234995  235001  235003  235009  235013  235015  235019  235025  235031  235033  235039  235043  235045  235051  235055  235061  235069  266669 

科目: 來源: 題型:解答題

17.如圖,已知四邊形ABCD滿足AD∥BC,AB=AD=CD=$\frac{1}{2}$BC=2,E是BC的中點,將△BAE沿AE折成△B1AE,使面B1AE⊥面AECD,F(xiàn)為棱B1D上一點.
(1)若F為B1D的中點,求證:B1D⊥面AEF;
(2)若B1E⊥AF,求二面角C-AF-B1的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=lnx-$\frac{1}{2}$ax2-bx
(1)當(dāng)a=b=$\frac{1}{2}$時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)F(x)=f(x)+$\frac{1}{2}$ax2+bx+$\frac{a}{x}$.對任意x∈(0,3],總有F′(x)≤$\frac{1}{2}$成立,求實數(shù)a的取值范圍;
(3)當(dāng)a=0,b=-1時,方程f(x)=mx在區(qū)間[1,e2]內(nèi)有唯一實數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知函數(shù)f(x)=lnx+ax2-(2a+1)x,其中a為常數(shù),且a≠0.
(1)當(dāng)a=2時,求f(x)的單調(diào)區(qū)間;
(2)若f(x)在x=1處取得極值,且在(0,e]的最大值為1,求a的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.設(shè)函數(shù)f(x)=ex(sinx-cosx)(0≤x≤2015π)的極小值點的個數(shù)為( 。
A.1007B.1008C.2015D.2016

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知$f(x)=-\frac{1}{2}a{x^2}+x-ln(1+x)$,其中a>0.
(Ⅰ)若函數(shù)f(x)在x=3處取得極值,求a的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)若f(x)在[0,+∞)上的最大值是0,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.已知函數(shù)y=f(x)滿足f′(x)=x2-3x-4,則y=f(x+3)的單調(diào)減區(qū)間為( 。
A.(-4,1)B.(-1,4)C.(-∞,-$\frac{3}{2}$)D.(-∞,$\frac{3}{2}$)

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知函數(shù)f(x)=xln x,g(x)=(-x2+ax-3)ex(a為實數(shù)).
(1)當(dāng)a=5時,求函數(shù)y=g(x)在x=1處的切線方程;
(2)求f(x)在區(qū)間[t,t+2](t>0)上的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{1-x}{ax}$+lnx在(1,+∞)上是增函數(shù),且a>0.
(1)求a的取值范圍;
(2)求函數(shù)g(x)=ln(1+x)-x在[0,+∞)上的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知F1(-2,0),F(xiàn)2(2,0)分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,且橢圓C過點(-$\sqrt{3}$,1).
(1)求橢圓C的方程;
(2)直線l過橢圓C的右焦點F2且斜率為1與橢圓C交于A,B兩點,求弦AB的長;
(3)以第(2)題中的AB為邊作一個等邊三角形ABP,求點P的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知函數(shù)f(x)=lnx-ax2-x(a∈R).
(1)當(dāng)a=1時,求曲線f(x)在點(1,-2)處的切線方程;
(2)當(dāng)a≤0時,討論函數(shù)f(x)在其定義域內(nèi)的單調(diào)性;
(3)若函數(shù)y=g(x)的圖象上存在一點P(x0,g(x0)),使得以P為切點的切線l將其圖象分割為c1,c2兩部分,且c1,c2分別位于切線l的兩側(cè)(點P除外),則稱x0為函數(shù)y=g(x)的“轉(zhuǎn)點”,問函數(shù)y=f(x)(a≥0)是否存在這樣的一個“轉(zhuǎn)點”,若存在,求出這個“轉(zhuǎn)點”,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案