相關(guān)習(xí)題
 0  234870  234878  234884  234888  234894  234896  234900  234906  234908  234914  234920  234924  234926  234930  234936  234938  234944  234948  234950  234954  234956  234960  234962  234964  234965  234966  234968  234969  234970  234972  234974  234978  234980  234984  234986  234990  234996  234998  235004  235008  235010  235014  235020  235026  235028  235034  235038  235040  235046  235050  235056  235064  266669 

科目: 來源: 題型:填空題

7.若冪函數(shù)f(x)的圖象經(jīng)過點(diǎn)A($\frac{1}{4}$,$\frac{1}{2}$),設(shè)它在A點(diǎn)處的切線l,則過點(diǎn)A與l垂直的直線方程為4x+4y-3=0.

查看答案和解析>>

科目: 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=$\frac{1}{xlnx}$(x>0且x≠1),求函數(shù)f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{1}{2}$x2-alnx(a∈R).
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)x>1時(shí),證明:$\frac{2}{3}$x3>$\frac{1}{2}$x2+lnx.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知定點(diǎn)F($\sqrt{2}$,0),定直線l:x=2$\sqrt{2}$,動(dòng)點(diǎn)P到定點(diǎn)F距離是它到定直線l距離的$\frac{\sqrt{2}}{2}$倍.設(shè)動(dòng)點(diǎn)P的軌跡為曲線E.
(1)求曲線E的方程.
(2)過點(diǎn)(1,0)的直線l與曲線E交與不同的兩點(diǎn)M,N,點(diǎn)A為曲線E的右頂點(diǎn),當(dāng)△AMN的面積為$\frac{\sqrt{10}}{3}$時(shí),求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知函數(shù)fn(x)=$\frac{1}{3}$x3-$\frac{1}{2}$(n+1)x2+x(n∈N*)數(shù)列{an}滿足an+1=fn′(an),a1=3.
(1)求a2,a3,a4;
(2)根據(jù)(1)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明;
(3)求證:對(duì)一切正整數(shù)n,$\frac{1}{{{{({a_1}-2)}^2}}}+\frac{1}{{{{({a_2}-2)}^2}}}+\frac{1}{{{{({a_3}-2)}^2}}}+…+\frac{1}{{{{({a_n}-2)}^2}}}<\frac{7}{4}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知函數(shù)f(x)=ax3+bx2+cx+d的圖象與x軸有三個(gè)不同交點(diǎn)(0,0),(x1,0),(x2,0),且f(x)在x=1,x=2時(shí)取得極值,則x1•x2的值為( 。
A.4B.5C.6D.不確定

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知函數(shù)f(x)=ex-kx,x∈R,k∈R.
(1)若k=e,試確定函數(shù)f(x)的單調(diào)區(qū)間;
(2)若k>0,且對(duì)于任意x∈R,f(|x|)>0恒成立,試確定實(shí)數(shù)k的取值范圍;
(3)設(shè)函數(shù)g(x)=f(x)+f(-x),求證:g(1)g(2)…g(2n)>(e2n+1+2)n(n∈N+).

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知函數(shù)g(x)=x2-(2a+1)x+alnx.
(1)當(dāng)a=1時(shí),求函數(shù)g(x)的單調(diào)增區(qū)間;
(2)求函數(shù)g(x)在區(qū)間[1,e]上的最值.

查看答案和解析>>

科目: 來源: 題型:解答題

19.甲、乙兩支排球隊(duì)進(jìn)行比賽,約定先勝3局者獲得比賽的勝利,比賽隨即結(jié)束.除第五局甲隊(duì)獲勝的概率是$\frac{1}{2}$外,其余每局比賽甲隊(duì)獲勝的概率都是$\frac{2}{3}$.假設(shè)各局比賽結(jié)果相互獨(dú)立.
(1)分別求甲隊(duì)以3:0,3:1,3:2獲勝的概率;
(2)若比賽結(jié)果為3:0或3:1,則勝利方得3分、對(duì)方得0分;若比賽結(jié)果為3:2,則勝利方得2分、對(duì)方得1分.求甲隊(duì)得分X的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:解答題

18.設(shè)方程$\sqrt{3}$tan2πx-4tanπx+$\sqrt{3}$=0在[n-1,n)(n∈N*)內(nèi)的所有解之和為an
(Ⅰ)求a1、a2的值,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足:b1=2,bn+1≥a${\;}_{_{n}}$,求證:$\frac{1}{2_{1}-3}$+$\frac{1}{2_{2}-3}$+…+$\frac{1}{2_{n}-3}$<2.

查看答案和解析>>

同步練習(xí)冊(cè)答案