相關習題
 0  234849  234857  234863  234867  234873  234875  234879  234885  234887  234893  234899  234903  234905  234909  234915  234917  234923  234927  234929  234933  234935  234939  234941  234943  234944  234945  234947  234948  234949  234951  234953  234957  234959  234963  234965  234969  234975  234977  234983  234987  234989  234993  234999  235005  235007  235013  235017  235019  235025  235029  235035  235043  266669 

科目: 來源: 題型:解答題

14.已知函數f(x)=ax+blnx在點(1,a)處的切線方程為y=-x+3.
①求a,b的值;
②求函數$g(x)=f(x)-\frac{1}{x}$在區(qū)間$[{\frac{1}{2},2}]$上的最值.

查看答案和解析>>

科目: 來源: 題型:解答題

13.定義在D上的函數f(x),如果滿足:對任意x∈D,存在常數M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數,其中M稱為f(x)的上界.已知函數$f(x)=1+a{(\frac{2})^x}+{(\frac{c}{4})^x}$.
(Ⅰ)當a=b=c=1時,求函數f(x)在(-∞,0)上的值域,并判斷函數f(x)在(-∞,0)上是否有上界,請說明理由;
(Ⅱ)若b=c=1,函數f(x)在[0,+∞)是以3為上界的有界函數,求實數a的取值范圍.
(Ⅲ)已知s為正整數,當a=1,b=-1,c=0時,是否存在整數λ,使得對任意的n∈N,不等式s≤λf(n)≤s+2恒成立?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖,已知矩形ABCD中,AB=2,AD=1,M為DC的中點,將△ADM沿AM折起,使得平面ADM⊥平面ABCM,連結BM.

(Ⅰ)求證:BM⊥平面ADM;
(Ⅱ)求二面角A-DM-C的余弦值; 
(Ⅲ)若點E是線段DB上的一動點,問點E在何位置時,三棱錐M-ADE的體積為$\frac{{\sqrt{2}}}{12}$.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知函數f(x)=alnx+$\frac{b(x+1)}{x}$,曲線y=f(x)在點(1,f(1))處的切線方程為y=2.
(I)求a、b的值;
(Ⅱ)當x>1時,不等式f(x)>$\frac{(x-k)lnx}{x-1}$恒成立,求實數k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知數列{an}中,${a_1}=1,{a_2}=\frac{1}{4}$,且$\frac{1}{{n{a_{n+1}}}}=\frac{1}{{(n-1){a_n}}}-\frac{1}{n(n-1)}(n≥2,n∈N)$.  
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)求證:對一切n∈N*,有$a_1^2+a_2^2+…+a_n^2<\frac{7}{6}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.設F1是橢圓${x^2}+\frac{y^2}{4}=1$的下焦點,O為坐標原點,點P在橢圓上,則$\overrightarrow{P{F_1}}•\overrightarrow{PO}$的最大值為(  )
A.$4+2\sqrt{3}$B.$4-2\sqrt{3}$C.$\sqrt{2}-1$D.$\sqrt{3}+1$

查看答案和解析>>

科目: 來源: 題型:選擇題

8.對于拋物線C:x2=4y,我們稱滿足$x_0^2<4{y_0}$的點M(x0,y0)在拋物線的內部,則直線l:x0x=2(y+y0)與拋物線C公共點的個數是( 。
A.0B.1C.2D.1或2

查看答案和解析>>

科目: 來源: 題型:選擇題

7.在正四面體ABCD中,平面ABC內動點P滿足其到平面BCD距離與到A點距離相等,則動點P的軌跡是(  )
A.B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知A(x1,y1),B(x2,y2)是拋物線y2=x上相異的兩點,且在x軸同側,點C(1,0).若直線AC,BC的斜率互為相反數,則y1y2等于( 。
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:選擇題

5.過點(2,0)引直線l與曲線$y=\sqrt{2-{x^2}}$相交于A,B兩點,O為坐標原點,當△AOB的面積取最大值時,直線l的斜率等于( 。
A.$\frac{{\sqrt{3}}}{3}$B.$-\sqrt{3}$C.$±\frac{{\sqrt{3}}}{3}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

同步練習冊答案