相關(guān)習(xí)題
 0  234812  234820  234826  234830  234836  234838  234842  234848  234850  234856  234862  234866  234868  234872  234878  234880  234886  234890  234892  234896  234898  234902  234904  234906  234907  234908  234910  234911  234912  234914  234916  234920  234922  234926  234928  234932  234938  234940  234946  234950  234952  234956  234962  234968  234970  234976  234980  234982  234988  234992  234998  235006  266669 

科目: 來(lái)源: 題型:選擇題

5.向如圖所示的矩形區(qū)域內(nèi)隨機(jī)投100個(gè)點(diǎn),陰影面積為以下程序框圖中的輸出的s,當(dāng)輸入的n=10000時(shí),請(qǐng)估算落在陰影區(qū)域內(nèi)的點(diǎn)的個(gè)數(shù) (結(jié)果四舍五入)為(  )
A.60B.62C.64D.66

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

4.在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為10的正方形,若PD⊥平面ABCD,PD=AB.
(I)求證:AC⊥PB.
(Ⅱ)求二面角A-PB-D的大。

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

3.如圖,矩形CDEF所在的平面與矩形ABCD所在的平面垂直,AD=$\sqrt{2}$,DE=$\sqrt{3}$,AB=4,EG=$\frac{1}{4}$EF,點(diǎn)M在線段GF上(包括兩端點(diǎn)),點(diǎn)
N在線段AB上,且$\overrightarrow{GM}$=$\overrightarrow{AN}$,則二面角M-DN-C的平面角的取值范圍為( 。
A.[30°,45°]B.[45°,60°]C.[30°,90°)D.[60°,90°)

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

2.已知F1,(-1,0),F(xiàn)2(1,0)為平面內(nèi)的兩個(gè)定點(diǎn),動(dòng)點(diǎn)P滿足|PF1|+|PF2|=2$\sqrt{2}$,記點(diǎn)P的軌跡為曲線Γ.
(Ⅰ)求曲線Γ的方程;
(Ⅱ)設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A,B,C是曲線Γ上的不同三點(diǎn),且$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$.試探究:直線AB與OC的斜率之積是否為定值?證明你的結(jié)論.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

1.如圖,某簡(jiǎn)單幾何體的一個(gè)面ABC內(nèi)接于圓M,AB是圓M的直徑,CF∥BE,BE⊥平面ABC,且AB=2,AC=1,BE+CF=7.
(Ⅰ)求證:AC⊥EF:
(Ⅱ)當(dāng)CF為何值時(shí),平面AEF與平面ABC所成的銳角取得最小值?

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

20.在平面直角坐標(biāo)系xOy中,定義M(x1,y1),N(x2,y2)兩點(diǎn)之間的“直角距離”為|MN|=|x1-x2|+|y1-y2|.對(duì)于以下結(jié)論,其中正確的序號(hào)是( 。
①O為坐標(biāo)原點(diǎn),滿足條件|OP|=1的點(diǎn)P的軌跡圍成的圖形的面積為2;
②設(shè)A(l,1),B為直線2x-y+3=0上任意一點(diǎn),則|AB|的最小值為2;
③O為坐標(biāo)原點(diǎn),M為曲線x${\;}^{\frac{1}{2}}$+y${\;}^{\frac{1}{2}}$=2上任意一點(diǎn),則|OM|恒等于2.
A.B.①②C.①③D.①②③

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

19.設(shè)橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{r}^{2}-{a}^{2}}$=1的焦點(diǎn)在x軸上,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn),點(diǎn)P是橢圓在第一象限內(nèi)的點(diǎn),直線F2P交y軸與點(diǎn)Q,
(Ⅰ)當(dāng)r=1時(shí),
(i)若橢圓E的離心率為$\frac{\sqrt{3}}{2}$,求橢圓E的方程;
(ii)當(dāng)點(diǎn)P在直線x+y=l上時(shí),求直線F1P與F1Q的夾角;
(Ⅱ)當(dāng)r=r0時(shí),若總有F1P⊥F1Q,猜想:當(dāng)a變化時(shí),點(diǎn)P是否在某定直線上,若是寫(xiě)出該直線方程(不必求解過(guò)程).

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

18.如圖,在五棱錐S-ABCDE中,SA⊥底面ABCDE,SA=AB=AE=2,BC=DE=$\sqrt{3}$,∠BAE=∠BCD=∠CDE=120°
(Ⅰ)求異面直線CD與SB所成的角(用反三角函數(shù)值表示);
(Ⅱ)求證BC⊥平面SAB;
(Ⅲ)用反三角函數(shù)值表示二面角B-SC-D的大小(本小問(wèn)不必寫(xiě)出解答過(guò)程).

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

17.在直三棱柱ABC-A1B1C1中,底面ABC為等邊三角形,且AA1=2AB,D、M 分別為AB,CC1的中點(diǎn),求證:(1)CD∥平面A1BM
(2)求二面角A1-BM-D的大小的余弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

16.某校舉辦“校園文化藝術(shù)節(jié)”,其中一項(xiàng)猜獎(jiǎng)活動(dòng),參與者需先后回答兩道選擇題,問(wèn)題A有三個(gè)選項(xiàng),問(wèn)題B有四個(gè)選項(xiàng),但都只有一個(gè)選項(xiàng)是正確的,正確回答問(wèn)題A可獲獎(jiǎng)金a元,正確回答問(wèn)題B可獲獎(jiǎng)金b元,活動(dòng)規(guī)定:
①參與者可任意選擇回答問(wèn)題的順序;
②如果第一個(gè)問(wèn)題回答錯(cuò)誤,該參與者猜獎(jiǎng)活動(dòng)終止,不獲得任何獎(jiǎng)金;
③如果第一個(gè)問(wèn)題回答正確,可以選擇繼續(xù)答題,若第二題也答對(duì),則該參與者獲得兩道題的獎(jiǎng)金,若第二題答錯(cuò),則該參與者只能得到第一個(gè)問(wèn)題獎(jiǎng)金的一半;也可以選擇放棄答題,獲得第一題的獎(jiǎng)金,猜獎(jiǎng)活動(dòng)終止.假設(shè)一個(gè)參與者在回答問(wèn)題前,對(duì)這兩個(gè)問(wèn)題都很陌生,且在第一個(gè)問(wèn)題回答正確后,選擇繼續(xù)答題和放棄答題的可能性相等.
(Ⅰ)如果該參與者先回答問(wèn)題A,求其恰好獲得獎(jiǎng)金a+b元的概率;
(Ⅱ)試確定哪種回答問(wèn)題的順序能使該參與者獲獎(jiǎng)金額的期望值較大.

查看答案和解析>>

同步練習(xí)冊(cè)答案