相關(guān)習(xí)題
 0  234743  234751  234757  234761  234767  234769  234773  234779  234781  234787  234793  234797  234799  234803  234809  234811  234817  234821  234823  234827  234829  234833  234835  234837  234838  234839  234841  234842  234843  234845  234847  234851  234853  234857  234859  234863  234869  234871  234877  234881  234883  234887  234893  234899  234901  234907  234911  234913  234919  234923  234929  234937  266669 

科目: 來源: 題型:選擇題

19.設(shè)F1、F2是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩個焦點,P是C1上一點,若|PF1|+|PF2|=6a,且△PF1F2最小內(nèi)角的大小為30°,拋物線C2:y2=12x的準(zhǔn)線交雙曲線C1所得的弦長為4$\sqrt{3}$,則雙曲線C1的實軸長為( 。
A.6B.2$\sqrt{6}$C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

18.某三棱錐的三視圖如圖所示,其中左視圖中虛線平分底邊,則該三棱錐的所有面中最大面的面積是( 。
A.2B.$\sqrt{5}$C.2$\sqrt{5}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦距為4,設(shè)右焦點為F,過原點O的直線l與橢圓C交于A,B兩點,線段AF的中點為M,線段BF的中點為N,且$\overrightarrow{OM}$•$\overrightarrow{ON}$=-$\frac{1}{4}$.
(Ⅰ) 求弦AB的長;
(Ⅱ) 若直線l的斜率為k,且$k≥\frac{{\sqrt{6}}}{2}$,求橢圓C的長軸長的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

16.若圓C:x2+(y+1)2=4,點$A(-\sqrt{5},-1)$和點$B(3\sqrt{5},a)$,從點A觀察點B,要使視線不被圓C擋住,則實數(shù)a的取值范圍是a>8$\sqrt{5}$-1或a<-8$\sqrt{5}$-1.

查看答案和解析>>

科目: 來源: 題型:填空題

15.一個幾何體的三視圖如圖所示,則該幾何體的體積為40

查看答案和解析>>

科目: 來源: 題型:填空題

14.已知點F是拋物線y2=x的焦點,AB為過點F的直線且與拋物線交于A,B兩點,|AB|=3,則線段AB的中點M的橫坐標(biāo)為1.25.

查看答案和解析>>

科目: 來源: 題型:解答題

13.如圖,中心在坐標(biāo)原點,焦點分別在x軸和y軸上的橢圓T1,T2都過點M(0,-$\sqrt{2}$),且橢圓T1與T2的離心率均為$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓T1與橢圓T2的標(biāo)準(zhǔn)方程;
(Ⅱ)過點M引兩條斜率分別為k,k′的直線分別交T1,T2于點P,Q,當(dāng)k′=4k時,問直線PQ是否過定點?若過定點,求出定點坐標(biāo);若不過定點,請說明理由.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.設(shè)P是圓(x-3)2+(y-1)2=4上的動點,Q是直線x=-3上動點,則|PQ|最小值為( 。
A.3B.5C.4D.11

查看答案和解析>>

科目: 來源: 題型:解答題

11.如圖,在圓C:(x+1)2+y2=16內(nèi)有一點A(1,0),Q為圓C上一點,AQ的垂直平分線與C、Q的連線交于點M.
(1)求點M的軌跡方程;
(2)在x軸上是否存在一定點N(t,0),使得點M與點N的距離和它到直線l:x=4的距離的比是常數(shù)λ?若存在,求出點N及λ.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知曲線C上的點到點F(1,0)的距離比它到直線x=-3的距離小2.
(1)求曲線C的方程;
(2)△AOB的一個頂點為曲線C的頂點O,A、B兩點都在曲線C上,且∠AOB=90°,證明直線AB比過一定點.

查看答案和解析>>

同步練習(xí)冊答案