相關(guān)習(xí)題
 0  234714  234722  234728  234732  234738  234740  234744  234750  234752  234758  234764  234768  234770  234774  234780  234782  234788  234792  234794  234798  234800  234804  234806  234808  234809  234810  234812  234813  234814  234816  234818  234822  234824  234828  234830  234834  234840  234842  234848  234852  234854  234858  234864  234870  234872  234878  234882  234884  234890  234894  234900  234908  266669 

科目: 來源: 題型:解答題

20.已知a>0,函數(shù)g(x)=ax2-2ax+1+b在區(qū)間[2,3],上有最大值4和最小值1.
(1)求a,b的值;
(2)判斷函數(shù)f(x)=$\frac{g(x)}{x}$在(-1,0)上的單調(diào)性,并用單調(diào)性定義證明;
(3)對于函數(shù)f(x)=$\frac{g(x)}{x}$,若不等式f(2x)-k•2x≥0在[-1,1]上有解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

19.已知函數(shù)f(x)=|x|(2-x),關(guān)于x的方程f(x)=m(m∈R)有三個不同的實數(shù)解x1,x2,x3,則x1x2x3的取值范圍為(1-$\sqrt{2}$,0).

查看答案和解析>>

科目: 來源: 題型:填空題

18.數(shù)列{an}滿足an+1+(-1)n an=2n(n∈N*),則{an}的前40項和為$\frac{{7•{2^{41}}-14}}{15}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\frac{2}{{{2^x}+1}}$+sinx,則f(-2)+f(-1)+f(0)+f(1)+f(2)=(  )
A.0B.5C.4D.1

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),若橢圓C上的一動點到右焦點的最短距離為2-$\sqrt{2}$,且右焦點到直線x=$\frac{a}{c}$的距離等于短半軸的長.已知點P(4,0),過P點的直線l與橢圓C交于M,N兩點.
(Ⅰ)求橢圓C的方程;         
(Ⅱ)求$\overrightarrow{OM}$•$\overrightarrow{ON}$的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

15.定義:若函數(shù)f(x)對于其定義域內(nèi)的某一數(shù)x0,有f(x0)=x0,則稱x0是f(x)的一個不動點.已知函數(shù)f(x)=ax2+(b+1)x+b-1(a≠0).
(1)當a=1,b=3時,求函數(shù)f(x)的不動點;
(2)若對任意的實數(shù)b,函數(shù)f(x)恒有兩個不動點,求a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上兩個點A、B的橫坐標是函數(shù)f(x)的不動點,且A、B的中點C在函數(shù)g(x)=-x+$\frac{2a}{5{a}^{2}-4a+1}$的圖象上,求b的最小值.(參考公式:A(x1,y1),B(x2,y2)的中點坐標為($\frac{{x}_{1}+{x}_{2}}{2}$,$\frac{{y}_{1}+{y}_{2}}{2}$))

查看答案和解析>>

科目: 來源: 題型:選擇題

14.在圓(x-1)2+(y-3)2=25內(nèi)過點(1,0)的最長弦和最短弦分別為AC和BD,則四邊形ABCD的面積為( 。
A.40B.20C.80D.10

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知${(x+1)^n}={a_0}+{a_1}(x-1)+{a_2}{(x-1)^2}+…+{a_n}{(x-1)^n}$,(其中n∈N*
(1)求a0及sn=a1+a2+…+an
(2)試比較sn與(n-2)•2n+2n2的大小,并說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

12.點D是△ABC邊BC上一點,滿足$\overrightarrow{AD}=\frac{3}{4}\overrightarrow{AB}+λ\overrightarrow{AC}$,則λ=$\frac{1}{4}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2y≤8}\\{0≤x≤4}\\{0≤y≤3}\end{array}\right.$則x+y的最大值為( 。
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊答案