相關習題
 0  234708  234716  234722  234726  234732  234734  234738  234744  234746  234752  234758  234762  234764  234768  234774  234776  234782  234786  234788  234792  234794  234798  234800  234802  234803  234804  234806  234807  234808  234810  234812  234816  234818  234822  234824  234828  234834  234836  234842  234846  234848  234852  234858  234864  234866  234872  234876  234878  234884  234888  234894  234902  266669 

科目: 來源: 題型:解答題

20.已知函數(shù)f(x)是定義在R上的偶函數(shù),且當x≤0時,f(x)=x2+2x.
(I)求函數(shù)f(x)的解析式
(II)現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,請補出完整函數(shù)f(x)的圖象,并根據(jù)圖象寫出函數(shù)f(x)的單調(diào)區(qū)間和值域.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知函數(shù)f(x)=x+$\frac{1}{x}$.
(I)判斷函數(shù)的奇偶性,并加以證明;
(II)用定義證明f(x)在(0,1)上是減函數(shù);
(III)函數(shù)f(x)在(-1,0)上的單調(diào)性如何?(直接寫出答案,不要求寫證明過程).

查看答案和解析>>

科目: 來源: 題型:解答題

18.設A={x|2x2+ax+2=0},2∈A,集合B={x|x2=1}.
(1)求a的值,并寫出集合A的所有子集;
(2)若集合C={x|bx=1},且C⊆B,求實數(shù)b的值.

查看答案和解析>>

科目: 來源: 題型:填空題

17.設集合M={(x,y)|3x-4y=$\frac{1}{27}$,x,y∈R},N={(x,y)|log${\;}_{\sqrt{3}}}$(x-y)=2,x,y∈R},則M∩N={(5,2)}.

查看答案和解析>>

科目: 來源: 題型:解答題

16.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知$\frac{cosA-2cosC}{cosB}$=$\frac{2c-a}$.
(1)求$\frac{sinC}{sinA}$的值
(2)若cosB=$\frac{1}{4}$,b=2,求△ABC的面積S.

查看答案和解析>>

科目: 來源: 題型:填空題

15.為了解某社區(qū)居民的家庭年收入與年支出的關系,隨機調(diào)查了該社區(qū)5戶家庭,得到如表統(tǒng)計數(shù)據(jù)表:
收入x(萬元)8.28.610.011.311.9
支出y(萬元)6.27.58.08.59.8
根據(jù)上表可得回歸直線方程$\stackrel{∧}{y}$=a+0.76x,據(jù)此估計,若該社區(qū)一戶家庭年支出為11.8萬元,則該家庭的年收入為15萬元.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知α,β是關于x的一元二次方程x2+(2m+3)x+m2=0的兩個不相等的實數(shù)根,且滿足$\frac{1}{α}$+$\frac{1}{β}$=-1,則m的值是(  )
A.3或-1B.3C.1D.-3或1

查看答案和解析>>

科目: 來源: 題型:解答題

13.在△ABC中,角A,B,C所對的邊分別為a,b,c,且acosB=(3c-b)cosA.
(1)若asinB=2$\sqrt{2}$,求b;
(2)若a=2$\sqrt{2}$,且△ABC的面積為$\sqrt{2}$,求b+c的周長.

查看答案和解析>>

科目: 來源: 題型:解答題

12..已知定義域為R的函數(shù)f(x)=$\frac{a-{2}^{x}}{{2}^{x}+1}$是奇函數(shù).
(1)求a的值;
(2)判斷f(x)在(-∞,+∞)上的單調(diào)性.(直接寫出答案,不用證明);
(3)若對于任意t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

11.函數(shù)f(x)是R上的奇函數(shù),且當x>0時,函數(shù)的解析式為f(x)=$\frac{2}{x}$-1.
(1)用定義證明f(x)在(0,+∞)上是減函數(shù);
(2)求函數(shù)f(x)的解析式.

查看答案和解析>>

同步練習冊答案