相關(guān)習(xí)題
 0  233878  233886  233892  233896  233902  233904  233908  233914  233916  233922  233928  233932  233934  233938  233944  233946  233952  233956  233958  233962  233964  233968  233970  233972  233973  233974  233976  233977  233978  233980  233982  233986  233988  233992  233994  233998  234004  234006  234012  234016  234018  234022  234028  234034  234036  234042  234046  234048  234054  234058  234064  234072  266669 

科目: 來(lái)源: 題型:解答題

12.命題p:若對(duì)任意的x∈[1,2],不等式x2-ax+1>0恒成立;
命題q:函數(shù)f(x)=$\frac{x+a}{x-1}$在(1,+∞)上單調(diào)遞減.若命題p∧q為假.
求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=$\sqrt{3}$sin2x+2sin(${\frac{π}{4}$+x)cos(${\frac{π}{4}$+x),則f(x)在x∈[0,$\frac{π}{2}}$]上的最大值與最小值之差為3.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

10.將函數(shù)f(x)=$\sqrt{3}$cos(πx)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再把圖象上所有的點(diǎn)向右平移1個(gè)單位,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的單調(diào)遞減區(qū)間是( 。
A.[2k-1,2k+2](k∈Z)B.[2k+1,2k+3](k∈Z)C.[4k+1,4k+3](k∈Z)D.[4k+2,4k+4](k∈Z)

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

9.下列函數(shù)中,既是奇函數(shù)又是減函數(shù)的是(  )
A.f(x)=x3,x∈(-3,3)B.f(x)=tanxC.f(x)=x|x|D.$f(x)=ln{2^{{e^{-x}}-{e^x}}}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

8.對(duì)于正整數(shù)m,n,p,q,若數(shù)列{an}為等差數(shù)列,則m+n=p+q是am+an=ap+aq的(  )
A.必要不充分條件B.充分不必要條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

7.已知集合A={x|x2-4x+3<0},B={y|y=2x-1,x≥0},則A∩B=( 。
A.B.[0,1)∪(3,+∞)C.AD.B

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

6.計(jì)算cos275°-cos15°sin105°的結(jié)果是( 。
A.$-\frac{1}{2}$B.$\frac{{\sqrt{2}-\sqrt{6}}}{4}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

5.等差數(shù)列{an}中,若a4=3,則a2+a3+a7=(  )
A.6B.9C.12D.15

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

4.已知集合A={x|-1<x<2,x∈N},B={-1,0,1},則A∩B=(  )
A.{-1,0}B.{0}C.{1}D.{0,1}

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.以直角坐標(biāo)系xOy的原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo),且兩坐標(biāo)系取相同的長(zhǎng)度單位.已知點(diǎn)N的極坐標(biāo)為($\sqrt{2}$,$\frac{π}{4}$),圓C1的極坐標(biāo)方程為ρ=1,若M為曲線C2上的動(dòng)點(diǎn),且M到定點(diǎn)N的距離等于圓C1的半徑.
(1)求曲線C2的直角坐標(biāo)方程;
(2)若過(guò)點(diǎn)P(2,0)的直線l的參數(shù)方程為$\left\{\begin{array}{l}x=2-\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù)),且直線l與曲線C2交于A、B兩點(diǎn),求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案