相關習題
 0  233844  233852  233858  233862  233868  233870  233874  233880  233882  233888  233894  233898  233900  233904  233910  233912  233918  233922  233924  233928  233930  233934  233936  233938  233939  233940  233942  233943  233944  233946  233948  233952  233954  233958  233960  233964  233970  233972  233978  233982  233984  233988  233994  234000  234002  234008  234012  234014  234020  234024  234030  234038  266669 

科目: 來源: 題型:解答題

5.(1)已知f(α)=$\frac{sin(π-α)cos(2π-α)tan(-α-π)tan(-α+\frac{3}{2}π)}{sin(-α-π)}$.若cos(α-$\frac{3}{2}$π)=$\frac{1}{5}$,α是第三象限角,求f(α);
(2)若α、β為銳角,且cos(α+β)=$\frac{12}{13}$,cos(2α+β)=-$\frac{3}{5}$,求cosα 的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知雙曲線Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),過雙曲線Γ的右焦點,且傾斜角為$\frac{π}{2}$的直線l與雙曲線Γ交地A,B兩點,O是坐標原點,若∠AOB=∠OAB,則雙曲線Γ的離心率為( 。
A.$\frac{\sqrt{3}+\sqrt{7}}{2}$B.$\frac{\sqrt{11}+\sqrt{33}}{2}$C.$\frac{\sqrt{3}+\sqrt{39}}{6}$D.$\frac{1+\sqrt{17}}{4}$

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知各項均不為0的等差數(shù)列{an}滿足a3-$\frac{{{a}_{7}}^{2}}{2}$+a11=0,數(shù)列{bn}為等比數(shù)列,且b7=a7,則b1•b13=( 。
A.25B.16C.8D.4

查看答案和解析>>

科目: 來源: 題型:選擇題

2.在區(qū)間(0,+∞)上不是增函數(shù)的是 (  )
A.y=2x+1B.y=3x2+1C.y=$\frac{2}{x}$D.y=3x2+x+1

查看答案和解析>>

科目: 來源: 題型:選擇題

1.已知集合A={x|x<-1或x>5},B={x|a≤x<a+4},且B?A,則實數(shù)a的取值范圍為( 。
A.(-∞,-5)∪(5,+∞)B.(-∞,-5)∪[5,+∞)C.(-∞,-5]∪[5,+∞)D.(-∞,-5]∪(5,+∞)

查看答案和解析>>

科目: 來源: 題型:選擇題

20.定義一種運算(a,b)*(c,d)=ad-bc,若函數(shù)f(x)=(1,log3x)*(tan$\frac{13π}{4}$,($\frac{1}{5}$)x),x0是方程f(x)=0的解,且0≤x0<x1,則f(x1)的值( 。
A.恒為負值B.等于0C.恒為正值D.不大于0

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知等差數(shù)列{an}滿足(a1+a2)+(a2+a3)+…(an+an+1)=2n(n+1)(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設bn=$\frac{{a}_{n}{a}_{n+1}}{2}$,求證:$\frac{1}{_{1}}$+$\frac{1}{_{2}}$+…+$\frac{1}{_{n}}$<1.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.曲線y=axcosx+16在x=$\frac{π}{2}$處的切線與直線y=x+1平行,則實數(shù)a的值為( 。
A.-$\frac{2}{π}$B.$\frac{2}{π}$C.$\frac{π}{2}$D.-$\frac{π}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

17.將函數(shù)f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)圖象上所有點的橫坐標縮短為原來的一半,再向右平移$\frac{π}{6}$個單位長度得到函數(shù)y=sinx的圖象,則ω,φ的值分別為(  )
A.$\frac{1}{2}$,$\frac{π}{6}$B.2,$\frac{π}{3}$C.2,$\frac{π}{6}$D.$\frac{1}{2}$,-$\frac{π}{6}$

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知命題p:?x0∈R,x02+4x0+6<0,則¬p為( 。
A.?x∈R,x02+4x0+6≥0B.?x0∈R,x02+4x0+6>0
C.?x∈R,x02+4x0+6>0D.?x0∈R,x02+4x0+6≥0

查看答案和解析>>

同步練習冊答案