相關習題
 0  233824  233832  233838  233842  233848  233850  233854  233860  233862  233868  233874  233878  233880  233884  233890  233892  233898  233902  233904  233908  233910  233914  233916  233918  233919  233920  233922  233923  233924  233926  233928  233932  233934  233938  233940  233944  233950  233952  233958  233962  233964  233968  233974  233980  233982  233988  233992  233994  234000  234004  234010  234018  266669 

科目: 來源: 題型:選擇題

5.已知函數(shù)f(x)=asinx-bcosx(a、b為常數(shù),a≠0,x∈R)在x=$\frac{π}{4}$處取得最小值,則函數(shù)y=|f($\frac{3π}{4}$-x)|是( 。
A.奇函數(shù)且它的圖象關于點(π,0)對稱
B.奇函數(shù)且它的圖象關于點($\frac{3π}{4}$,0)對稱
C.偶函數(shù)且它的圖象關于直線x=π對稱
D.偶函數(shù)且它的圖象關于直線x=$\frac{3π}{4}$對稱

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知集合$A=\left\{{x|{{log}_{\frac{1}{3}}}(x-1)>0}\right\},a={2^{0.3}}$,則下列關系正確的是( 。
A.A∩a=∅B.a⊆AC.a∉AD.a∈A

查看答案和解析>>

科目: 來源: 題型:選擇題

3.在△ABC中,設AB=6,BC=7,AC=4,O為△ABC的內心,若$\overrightarrow{AO}$=p$\overrightarrow{AB}$+q$\overrightarrow{AC}$,則$\frac{p}{q}$等于(  )
A.$\frac{2}{3}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目: 來源: 題型:填空題

2.在區(qū)間[-2,4]上隨機地取一個數(shù)x,若x滿足|x|≤m的概率為$\frac{2}{3}$,則m=2.

查看答案和解析>>

科目: 來源: 題型:填空題

1.設點集M={(x,y)|xcosθ+ysinθ-sinθ-1=0(0≤θ≤2π)},集合M在坐標平面xoy內形成區(qū)域的邊界構成曲線C,則C的方程為x2+(y-1)2=1.

查看答案和解析>>

科目: 來源: 題型:解答題

20.為了讓學生了解環(huán)保知識,增強環(huán)保意識,某中學舉行了一次“環(huán)保知識競賽”,共有900名學生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計.請你根據(jù)尚未完成并有局部污損的頻率分布表和頻數(shù)分布直方圖,解答下列問題:
分組頻數(shù)頻率
50.5~60.540.08
60.5~70.5a0.16
70.5~80.510b
80.5~90.5160.32
90.5~100.5cd
合計501
(1)求實數(shù)a,b,c,d的值;
(2)補全頻數(shù)條形圖;
(3)若成績在85.5~100.5分的學生為一等獎,問獲得一等獎的學生約為多少人?

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知平面向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow$=($\sqrt{2}$,$\sqrt{2}$),f(x)=$\overrightarrow{a}$?$\overrightarrow$,x∈R.
(1)求函數(shù)f(x)的最大值及取得最大值時相應的x的取值集合;
(2)求函數(shù)f(x)的單調遞增區(qū)間.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.一個長方體,過同一個頂點的三個面的面積分別是$\sqrt{6}$,$\sqrt{3}$,$\sqrt{2}$,則長方體的對角線長為( 。
A.$2\sqrt{3}$B.$3\sqrt{2}$C.6D.$\sqrt{6}$

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)f(x)=eax-ax+e2-4,x∈[-2,2](a≠0,e為自然對數(shù)的底數(shù)).
(1)求f(x)的單調區(qū)間;
(2)求f(x)的最大值;
(3)如果對于一切x1、x2、x3∈(-2,2),總存在以f(x1)、f(x2)、f(x3)為三邊長的三角形,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知離心率為$\frac{\sqrt{3}}{2}$的橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)過點P(4,1).
(1)求橢圓方程;
(2)不垂直于坐標軸的直線l交橢圓于A,B兩點,直線PA與直線PB斜率之和為-2,求證:直線AB恒與x軸交于定點M,并求出點M坐標.

查看答案和解析>>

同步練習冊答案