相關(guān)習(xí)題
 0  233643  233651  233657  233661  233667  233669  233673  233679  233681  233687  233693  233697  233699  233703  233709  233711  233717  233721  233723  233727  233729  233733  233735  233737  233738  233739  233741  233742  233743  233745  233747  233751  233753  233757  233759  233763  233769  233771  233777  233781  233783  233787  233793  233799  233801  233807  233811  233813  233819  233823  233829  233837  266669 

科目: 來(lái)源: 題型:填空題

18.記 a=tanθ,b=sinθ,c=cosθ,$θ∈\{θ\left|{-\frac{π}{4}<θ<\frac{3π}{4},θ≠0,\frac{π}{4},\frac{π}{2}}\right.$}中,若 a,b,c三數(shù)中最大的數(shù)是b,則θ的取值范圍是($\frac{π}{2}$,$\frac{3π}{4}$).

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

17.設(shè)集合M={y|y=3-x2},N={y|y=2x2-2},則M∩N={y|-2≤y≤3}.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

16.在區(qū)間(1,+∞)上不是增函數(shù)的是(  )
A.y=-$\frac{1}{x}$B.y=-x2+2x+1C.y=$\frac{x}{1-x}$+2D.y=1+x2

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

15.(1)已知函數(shù)f(x)=$\frac{{{x^2}+2x+a}}{x}$,若對(duì)于任意x∈[1,+∞),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍;
(2)已知x>1,求f(x)=x+$\frac{1}{x-1}$最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

14.(1)(log2125+log425+log85)(log52+log254+log1258);
(2)($\root{3}{25}-\sqrt{125}$)÷$\root{4}{25}$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

13.計(jì)算2log525+3log264-8log71的值為( 。
A.14B.8C.22D.27

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

12.某校高三(1)班全體女生的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見(jiàn)部分如下,據(jù)此解答如下問(wèn)題:
(1)求高三(1)班全體女生的人數(shù);
(2)求分?jǐn)?shù)在[80,90)之間的女生人數(shù);并計(jì)算頻率分布直方圖中[80,90)間的矩形的高;
(3)估計(jì)高三(1)班全體女生的一次數(shù)學(xué)測(cè)試成績(jī)的平均數(shù),中位數(shù).

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

11.已知f(x)=x2+mx+1,使不等式f(x)≥3對(duì)任意的m∈[-1,1]恒成立的實(shí)數(shù)x的取值范圍為(-∞,-2]∪[2,+∞).

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

10.某校舉辦2010年上海世博會(huì)知識(shí)競(jìng)賽,從參賽的高一、高二學(xué)生中各抽100人的成績(jī)作為樣本,其結(jié)果如右表:
(1)求m,n的值;
(2)在犯錯(cuò)誤的概率不超過(guò)多少的前提下認(rèn)為“高一、高二兩個(gè)年級(jí)這次世博會(huì)知識(shí)競(jìng)賽的成績(jī)有差異.參考數(shù)據(jù):
(參考公式:k=$\frac{n(ab-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)
高一高二合計(jì)
合格人數(shù)80m140
不合格人數(shù)n4060
合計(jì)100100200
P(K2≥k00.0250.0100.0050.001
k05.0246.6357.87910.828

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

9.在△ABC中,tanA+tanB+$\sqrt{3}$=$\sqrt{3}$tanAtanB,sinAcosB=$\frac{\sqrt{3}}{4}$,則△ABC的形狀為等邊三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案