相關習題
 0  233090  233098  233104  233108  233114  233116  233120  233126  233128  233134  233140  233144  233146  233150  233156  233158  233164  233168  233170  233174  233176  233180  233182  233184  233185  233186  233188  233189  233190  233192  233194  233198  233200  233204  233206  233210  233216  233218  233224  233228  233230  233234  233240  233246  233248  233254  233258  233260  233266  233270  233276  233284  266669 

科目: 來源: 題型:選擇題

15.如圖,是函數(shù)y=f(x)的導函數(shù)y=f′(x)的圖象,則下面哪一個判斷是正確的( 。
A.在區(qū)間(-3,1)內(nèi)y=f(x)是增函數(shù)B.在區(qū)間(1,3)內(nèi)y=f(x)是減函數(shù)
C.在區(qū)間(4,5)內(nèi)y=f(x)是增函數(shù)D.在x=2時,y=f(x)取得極小值

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知Sn是等差數(shù)列{an}的前n項和,bn=$\frac{S_n}{n}$,n∈N*
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)若S7=7,S15=75,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.式子$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2015×2016}$的值是(  )
A.$\frac{1}{2015}$B.$\frac{1}{2016}$C.$\frac{2014}{2015}$D.$\frac{2015}{2016}$

查看答案和解析>>

科目: 來源: 題型:選擇題

12.已知數(shù)列{an}的前n項和Sn=1-5+9-13+17-21+…+(-1)n-1(4n-3),則S10=( 。
A.-20B.-21C.20D.21

查看答案和解析>>

科目: 來源: 題型:填空題

11.命題:?x∈R,x2≠x的否定是:?x∈R,x2=x.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知函數(shù)f(x)=sinx(cosx-sinx),則下列說法正確的為( 。
A.函數(shù)f(x)的最小正周期為2π
B.f(x)的圖象關于直線$x=\frac{π}{8}$
C.對稱f(x)的最大值為$\sqrt{2}$
D.將f(x)的圖象向右平移$\frac{π}{8}$,再向下平移$\frac{1}{2}$個單位長度后會得到一個奇函數(shù)的圖象

查看答案和解析>>

科目: 來源: 題型:選擇題

9.當X~B(6,$\frac{1}{2}}$),則使P(X=k)最大的k的值是( 。
A.2B.3C.2或3D.4

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=2sinθ-2cosθ
(Ⅰ)求曲線C的普通方程.
(Ⅱ)求直線l被曲線C截得的弦長.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=ax2+bx+c(a,b,c∈R),滿足f(0)=1,f(1)=0,且f(x+1)是偶函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)設h(x)=$\left\{\begin{array}{l}{f(x),x≥1}\\{-f(2-x),x<1}\end{array}\right.$,若對任意的x∈[t,t+2],不等式h(x+t)≤h(x2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知函數(shù)f(x)=klnx-x2,k∈R.
(Ⅰ)若f(x)在(0,1]上是增函數(shù),求k的取值范圍;
(Ⅱ)討論函數(shù)f(x)的零點個數(shù).

查看答案和解析>>

同步練習冊答案