相關習題
 0  233089  233097  233103  233107  233113  233115  233119  233125  233127  233133  233139  233143  233145  233149  233155  233157  233163  233167  233169  233173  233175  233179  233181  233183  233184  233185  233187  233188  233189  233191  233193  233197  233199  233203  233205  233209  233215  233217  233223  233227  233229  233233  233239  233245  233247  233253  233257  233259  233265  233269  233275  233283  266669 

科目: 來源: 題型:填空題

5.已知函數(shù)f(x)是定義在R上的奇函數(shù),設其導函數(shù)為f′(x),當x∈(-∞,0]時,恒有xf′(x)<f(-x),令F(x)=xf(x),則滿足F(3)>F(2x-3)的實數(shù)x的取值范圍是(0,3).

查看答案和解析>>

科目: 來源: 題型:選擇題

4.一個正整數(shù)數(shù)表如表(表中下一行中的數(shù)的個數(shù)比上一行中數(shù)的個數(shù)多兩個,每行中    的數(shù)成公比為2的等比數(shù)列)則第6行的第5個數(shù)是( 。
第1行1
第2行2   4   8
第3行16  32  64  128   256
A.229B.230C.231D.232

查看答案和解析>>

科目: 來源: 題型:填空題

3.設(x-$\sqrt{2}$)n展開式中,第二項與第四項的系數(shù)之比為1:2,則展開式中第三項的二次項系數(shù)為6.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知數(shù)列{an}的前n項和為Sn,且滿足2an-1=Sn
(1)求數(shù)列{an}的通項公式;
(2)對任意n,k∈N*,有λ2+k2-$\frac{λn}{{a}_{n}}$-10k+$\frac{97}{4}$>0,求正數(shù)λ的取值范圍;
(3)設bn=an-(-1)n,記Tn=$\frac{1}{_{1}}$+$\frac{1}{_{2}}$+…+$\frac{1}{_{n}}$,求證:T2n<2.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知a>0,函數(shù)f(x)=x|x-a|.
(1)當a=2時,寫出函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)求函數(shù)y=f(x)在區(qū)間[0,2]上的最大值.

查看答案和解析>>

科目: 來源: 題型:填空題

20.一個直徑AB=2的半圓,過A作這個圓所在平面的垂線,在垂線上取一點S,使AS=AB,C為半圓上一個動點,N,M分別為A在SC,SB上的射影.當三棱錐S-AMN的體積最大時,∠BAC的余弦值為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

19.已知P為△ABC內(nèi)一點,且5$\overrightarrow{AP}$-2$\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{0}$,則△PAC的面積與△ABC的面積之比等于$\frac{2}{5}$.

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知點A(3,$\sqrt{3}$),O為坐標原點,點P(x,y)滿足$\left\{\begin{array}{l}{\sqrt{3}x-y≤0}\\{x-\sqrt{3}y+2≥0}\\{y≥0}\end{array}\right.$,則滿足條件點P所形成的平面區(qū)域的面積為$\sqrt{3}$,$\overrightarrow{OP}$在$\overrightarrow{OA}$方向上投影的最大值為$\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

17.已知α∈($\frac{π}{6}$,$\frac{π}{2}$),且sin(α-$\frac{π}{6}$)=$\frac{1}{3}$,則sinα=$\frac{\sqrt{3}+2\sqrt{2}}{6}$,cos(α+$\frac{π}{3}$)=-$\frac{1}{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

16.設拋物線y2=2px(p>0)的焦點為F,準線為l,點A(0,2).若線段FA的中點B在拋物線上,則F到l的距離為$\sqrt{2}$,|FB|=$\frac{3\sqrt{2}}{4}$.

查看答案和解析>>

同步練習冊答案