相關(guān)習題
 0  233062  233070  233076  233080  233086  233088  233092  233098  233100  233106  233112  233116  233118  233122  233128  233130  233136  233140  233142  233146  233148  233152  233154  233156  233157  233158  233160  233161  233162  233164  233166  233170  233172  233176  233178  233182  233188  233190  233196  233200  233202  233206  233212  233218  233220  233226  233230  233232  233238  233242  233248  233256  266669 

科目: 來源: 題型:填空題

11.已知角A為三角形的一個內(nèi)角,且cosA=$\frac{3}{5}$,sinA=$\frac{4}{5}$.cos2A=-$\frac{7}{25}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知三角形ABC外接圓O的半徑為1(O為圓心),且$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,|$\overrightarrow{OA}$|=2|$\overrightarrow{AB}$|,則$\overrightarrow{CA}$•$\overrightarrow{BC}$等于( 。
A.$-\frac{15}{4}$B.$-\frac{3}{4}$C.$\frac{15}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目: 來源: 題型:選擇題

9.設m,n是兩條不同的直線,α,β是兩個不同的平面.下列命題正確的是( 。
A.若m?α,n?β,m⊥n,則α⊥βB.若α∥β,m⊥α,n∥β,則 m⊥n
C.若α⊥β,m⊥α,n∥β,則m∥nD.若α⊥β,α∩β=m,n⊥m,則n⊥β

查看答案和解析>>

科目: 來源: 題型:選擇題

8.設x∈R且x≠0,則“x>1”是“x+$\frac{1}{x}$>2”成立的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來源: 題型:選擇題

7.已知sinx=$\frac{3}{5}$,則sin2x的值為(  )
A.$\frac{12}{25}$B.$\frac{24}{25}$C.$\frac{12}{25}$或$-\frac{12}{25}$D.$\frac{24}{25}$或-$\frac{24}{25}$

查看答案和解析>>

科目: 來源: 題型:選擇題

6.下列四個函數(shù)中,在其定義域上既是奇函數(shù)又是單調(diào)遞增函數(shù)的是(  )
A.y=x-1B.y=tanxC.y=x3D.$y=-\frac{2}{x}$

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知集合A={x|x(x-1)<0,x∈R},B={x|$\frac{1}{2}$<x<2,x∈R},那么集合A∩B=( 。
A.B.$\{x|\frac{1}{2}<x<1,x∈R\}$C.{x|-2<x<2,x∈R}D.{x|-2<x<1,x∈R}

查看答案和解析>>

科目: 來源: 題型:解答題

4.設數(shù)列{an}的前n項和為Sn,設an是Sn與2的等差中項,數(shù)列{bn}中,b1=1,點P(bn,bn+1)在直線y=x+2上.
(Ⅰ)求an,bn;
(Ⅱ)若數(shù)列{bn}的前n項和為Bn,比較$\frac{1}{2{B}_{1}}$+$\frac{2}{3{B}_{2}}$+…+$\frac{n}{(n+1){B}_{n}}$與1的大小.

查看答案和解析>>

科目: 來源: 題型:解答題

3.設a,b是正奇數(shù),數(shù)列{cn}(n∈N*)定義如下:c1=a,c2=b,對任意n≥3,cn是cn-1+cn-2的最大奇約數(shù).數(shù)列{cn}中的所有項構(gòu)成集合A.
(Ⅰ)若a=9,b=15,寫出集合A;
(Ⅱ)對k≥1,令dk=max{c2k,c2k-1}(max{p,q}表示p,q中的較大值),求證:dk+1≤dk;
(Ⅲ)證明集合A是有限集,并寫出集合A中的最小數(shù).

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{x^2}{4}$-ax+cosx(a∈R),x∈[-$\frac{π}{2}$,$\frac{π}{2}$].
(Ⅰ)若函數(shù)f(x)是偶函數(shù),試求a的值;
(Ⅱ)當a>0時,求證:函數(shù)f(x)在(0,$\frac{π}{2}$)上單調(diào)遞減.

查看答案和解析>>

同步練習冊答案