相關(guān)習題
 0  210634  210642  210648  210652  210658  210660  210664  210670  210672  210678  210684  210688  210690  210694  210700  210702  210708  210712  210714  210718  210720  210724  210726  210728  210729  210730  210732  210733  210734  210736  210738  210742  210744  210748  210750  210754  210760  210762  210768  210772  210774  210778  210784  210790  210792  210798  210802  210804  210810  210814  210820  210828  266669 

科目: 來源: 題型:

如圖,三棱錐P-ABC,D為AC的中點,PA=PB=PC=
5
,AC=2
2
AB=
2
,BC=
6
. 
(1)求證:PD⊥底面ABC;
(2)求二面角P-AB-C的正切值.

查看答案和解析>>

科目: 來源: 題型:

已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,且截距不為零,求此切線的方程;
(2)從圓C外一點p向該圓引一條切線,切點為M,O為坐標原點,且有PM=PO,求使PM的長取得最小值的點P的坐標.
(3)直線l與圓C相交于A,B兩點,點N(0,
5
3
)為線段AB的三等分點,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:

已知0<β<α<
π
2
,且cosα=
5
13
,cos(α-β)=
4
5

(1)求sin(α-β)的值;
(2)求cos(α+
π
4
)
的值.

查看答案和解析>>

科目: 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c.
(1)若(2a+c)cosB+bcosC=0,求角B的值;
(2)若b為a,c的等比中項,求cosB的最小值.

查看答案和解析>>

科目: 來源: 題型:

(1)已知a,b∈R*,a+b=4,求證:
1
a
+
1
b
≥1.
(2)已知a,b,c∈R*,a+b+c=9,求證:
1
a
+
1
b
+
1
c
≥1.
并類比上面的結(jié)論寫出推廣后的一般性結(jié)論.(不需證明)

查看答案和解析>>

科目: 來源: 題型:

如圖1,已知矩形ABCD中,AB=2,AD=1,M為DC的中點.將△ADM沿AM折起,使得平面ADM⊥平面ABCM,如圖2所示.

(1)求證:AD⊥BM;
(2)若點E是線段DB上的一動點,問點E在何位置時,三棱錐M-ADE的體積為
2
12

查看答案和解析>>

科目: 來源: 題型:

已知a∈R,函數(shù)f(x)=lnx-a(x-1).
(Ⅰ)若a=
1
e-1
,求函數(shù)y=|f(x)|的極值點;
(Ⅱ)若不等式f(x)≤-
ax2
e2
+
(1+2a-ea)x
e
恒成立,求a的取值范圍.(e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目: 來源: 題型:

已知f(x)=a+|b|sinx,(a,b∈R),x∈R,且函數(shù)f(x)的最大值為3,最小值為1.
(1)求a,b的值;
(2)(。┣蠛瘮(shù)f(-x)的單調(diào)遞增區(qū)間;
(ⅱ)求函數(shù)f(x)的對稱中心.

查看答案和解析>>

科目: 來源: 題型:

若四位數(shù)n=
.
abcd
的各位數(shù)碼a,b,c,d中,任三個數(shù)碼皆可構(gòu)成一個三角形的三條邊長,則稱n為四位三角形數(shù),定義(a,b,c,d)為n的數(shù)碼組,其中a,b,c,d∈M={1,2,…,9}若 數(shù)碼組為(a,a,b,b)型,(a>b),試求所有四位三角形數(shù)的個數(shù).

查看答案和解析>>

科目: 來源: 題型:

在某校組織的一次籃球定點投籃測試中,規(guī)定每人最多投3次,每次投籃的結(jié)果相互獨立.在A處每投進一球得3分,在B處每投進一球得2分,否則得0分.將學生得分逐次累加并用ξ表示,如果ξ的值不低于3分就認為通過測試,立即停止投籃,否則繼續(xù)投籃,直到投完三次為止.投籃的方案有以下兩種:方案1:先在A處投一球,以后都在B處投;方案2:都在B處投籃.甲同學在A處投籃的命中率為0.5,在B處投籃的命中率為0.8.
(Ⅰ)甲同學選擇方案1.求甲同學測試結(jié)束后所得總分等于4的概率;求甲同學測試結(jié)束后所得總分ξ的分布列和數(shù)學期望Eξ;
(Ⅱ)你認為甲同學選擇哪種方案通過測試的可能性更大?說明理由.

查看答案和解析>>

同步練習冊答案