相關(guān)習(xí)題
 0  210263  210271  210277  210281  210287  210289  210293  210299  210301  210307  210313  210317  210319  210323  210329  210331  210337  210341  210343  210347  210349  210353  210355  210357  210358  210359  210361  210362  210363  210365  210367  210371  210373  210377  210379  210383  210389  210391  210397  210401  210403  210407  210413  210419  210421  210427  210431  210433  210439  210443  210449  210457  266669 

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=2cos(2x+
π
3
)+1.
(Ⅰ)先列表,再用“五點(diǎn)法”畫出該函數(shù)在一個(gè)周期內(nèi)的簡(jiǎn)圖;
(Ⅱ)寫出該函數(shù)在[0,π]的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知P1(x1,y1),P2(x2,y2)是以原點(diǎn)O為圓心的單位圓上的兩點(diǎn),∠P1OP2=θ(θ為鈍角).若sin(θ+
π
4
)=
3
5
,則x1x2+y1y2的值為
 

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=ax+b
1+x2
(x≥0),f(0)=1,f(
3
)=2-
3

(1)求函數(shù)f(x)的表達(dá)式及值域;
(2)若函數(shù)f(x)與g(x)的圖象關(guān)于直線y=x對(duì)稱,問是否存在實(shí)數(shù)m,使得命題p:f(m2-m)<f(3m-4)和q:g(
m-1
4
)>
3
4
滿足復(fù)合命題p且q為真命題?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

在△ABC中,內(nèi)角A、B、C的對(duì)邊分別是a、b、c,且a2=b2+c2+
3
bc.
(Ⅰ)求A;
(Ⅱ)設(shè)a=
3
,S為△ABC的面積,求S+3cosBcosC的最大值,并指出此時(shí)B的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax2+b在x=1處的切線方程為y=x+1.
①求a,b的值;
②求函數(shù)f(x)在區(qū)間[-1,
1
2
]上的值域.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=sin
πx
3
,則f(1)+f(2)+f(3)+…+f(2010)+f(2014)=
 

查看答案和解析>>

科目: 來(lái)源: 題型:

在△ABC中,∠A,∠B,∠C的對(duì)邊分別為a,b,c,若bcosC=(2a-c)cosB,
(Ⅰ)求∠B的大;
(Ⅱ)若b=
7
,a-c=2,求△ABC的面積.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3+mx2-3m2x+1(m>0).
(1)若m=1,求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)若函數(shù)f(x)在區(qū)間(2m-1,m+1)上單調(diào)遞增,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

投資商到一開發(fā)區(qū)投資72萬(wàn)元建起一座蔬菜加工廠,第一年共支出12萬(wàn)元,以后每年支出增加4萬(wàn)元,從第一年起每年蔬菜銷售收入50萬(wàn)元.設(shè)f(n)表示前n年的純利潤(rùn)總和(f(n)=前n年的總收入一前n年的總支出一投資額).
(1)該廠從第幾年開始盈利?
(2)若干年后,投資商為開發(fā)新項(xiàng)目,對(duì)該廠有兩種處理方案:①年平均純利潤(rùn)達(dá)到最大時(shí),以48萬(wàn)元出售該廠;②純利潤(rùn)總和達(dá)到最大時(shí),以10萬(wàn)元出售該廠,問哪種方案更合算?

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=lnx,g(x)=(1-x)f(x)
(1)求y=f(x)在點(diǎn)(1,0)處的切線方程;
(2)判斷h(x)=g′(x)及g(x)在區(qū)間(1,+∞)上的單調(diào)性;
(3)證明:x>e
2x-2
x2+1
在(1,+∞)上恒成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案