相關(guān)習(xí)題
 0  209730  209738  209744  209748  209754  209756  209760  209766  209768  209774  209780  209784  209786  209790  209796  209798  209804  209808  209810  209814  209816  209820  209822  209824  209825  209826  209828  209829  209830  209832  209834  209838  209840  209844  209846  209850  209856  209858  209864  209868  209870  209874  209880  209886  209888  209894  209898  209900  209906  209910  209916  209924  266669 

科目: 來源: 題型:

已知等差數(shù)列{an}中,an=-2n+11
(1)求數(shù)列{an}的前n項和.
(2)當(dāng)n為何值時,前n項和Sn有最大值,并求出最大值.

查看答案和解析>>

科目: 來源: 題型:

將邊長為2的正方形ABCD沿對角線BD折疊,使得平面ABD⊥平面CBD,AE⊥平面ABD,且AE=
2
,M為BE中點
(1)求證:AC⊥面BDE;
(2)求證:CM∥平面ADE.

查看答案和解析>>

科目: 來源: 題型:

在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸正半軸為極軸建立坐標(biāo)系.已知點A的極坐標(biāo)為(2
2
,
π
4
),直線L的極坐標(biāo)方程為ρcos(θ-
π
4
)=a,且點A在直線L上.
(1)求a的值及直線L的直角坐標(biāo)方程.
(2)圓C的參數(shù)方程
x=1+cosα
y=-1+sinα
(α為參數(shù)),試判斷直線L與圓C的位置關(guān)系.

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an}滿足a1=a(a∈N*),Sn=pan+1(p≠0,p≠-1,n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)對任意k∈N*,若將ak+1,ak+2,ak+3按從小到大的順順序排列后,此三項均能構(gòu)成等差數(shù)列,且記公差為dk
(i)求p的值以及數(shù)列{dk}的通項公式;
(ii)記數(shù)列{dk}的前k項和為Sk,問是否存在正整數(shù)a,使得Sk<30恒成立,若存在,求出a的最大值;若不存在說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)的定義域為R,且對任意x、y∈R滿足f(x+y)=f(x)+f(y),當(dāng)x>0時,f(x)<0.
(1)請找出一個滿足條件的函數(shù)f(x);
(2)猜想函數(shù)f(x)的奇偶性和單調(diào)性,并證明你的結(jié)論;
(3)若f(1)=-3,求f(x)在[-2,2]上的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:

當(dāng)x∈[0,1]時,求函數(shù)f(x)=x2+(1-2a)x+a2的最小值g(a)的表達式.

查看答案和解析>>

科目: 來源: 題型:

已知
a
=(1,1),
b
=(1,-2)
(1)求
a
+2
b
;
(2)若|
c
|=1,且
a
-
c
a
-2
c
垂直,求
a
c
的夾角θ的余弦值.

查看答案和解析>>

科目: 來源: 題型:

已知向量
a
=(-1,1),
b
=(4,x),
c
=(y,2),
d
=(8,6),且
b
d
,(4
a
+
d
)⊥
c

(1)求
b
c
;
(2)求
c
a
方向上的投影.

查看答案和解析>>

科目: 來源: 題型:

當(dāng)x∈(-1,1)時,函數(shù)f(x)滿足2f(x)-f(-x)=lg(x+1),求f(x)的解析式.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=-
a
x
(a>0),設(shè)F(x)=f(x)+g(x)
(Ⅰ)求函數(shù)F(x)的單調(diào)區(qū)間
(Ⅱ)若以函數(shù)y=F(x)(x∈(0,3])圖象上任意一點P(x0,y0)為切點的切線的斜率k≤
1
2
恒成立,求實數(shù)a的最小值
(Ⅲ)是否存在實數(shù)m,使得函數(shù)y=g(
2a
x2+1
)+m-1的圖象與函數(shù)y=f(1+x2)的圖象恰有四個不同交點?若存在,求出實數(shù)m的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案