科目: 來源:2013-2014學年(安徽專用)高考數學(文)仿真模擬卷2練習卷(解析版) 題型:填空題
已知F1,F2是雙曲線-y2=1的兩個焦點,點P在此雙曲線上,·=0,如果點P到x軸的距離等于,那么該雙曲線的離心率等于________.
查看答案和解析>>
科目: 來源:2013-2014學年(安徽專用)高考數學(文)仿真模擬卷2練習卷(解析版) 題型:解答題
設函數f(x)=sin+sin+cos ωx(其中ω>0),且函數f(x)的圖象的兩條相鄰的對稱軸間的距離為.
(1)求ω的值;
(2)將函數y=f(x)的圖象上各點的橫坐標伸長到原來的2倍,縱坐標不變,得到函數y=g(x)的圖象,求函數g(x)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目: 來源:2013-2014學年(安徽專用)高考數學(文)仿真模擬卷2練習卷(解析版) 題型:解答題
某高校組織自主招生考試,其有2 000名學生報名參加了筆試,成績均介于195分到275分之間,從中隨機抽取50名同學的成績進行統(tǒng)計,將統(tǒng)計結果按如下方式分成八組:第一組[195,205),第二組[205,215),……,第八組[265,275).如圖是按上述分組方法得到的頻率分布直方圖.
(1)從這2 000名學生中,任取1人,求這個人的分數在255~265之間的概率約是多少?
(2)求這2 000名學生的平均分數;
(3)若計劃按成績取1 000名學生進入面試環(huán)節(jié),試估計應將分數線定為多少?
查看答案和解析>>
科目: 來源:2013-2014學年(安徽專用)高考數學(文)仿真模擬卷2練習卷(解析版) 題型:解答題
如圖1,在直角梯形ABCD中,AD∥BC,∠ADC=90°,BA=BC.把△BAC沿AC折起到△PAC的位置,使得點P在平面ADC上的正投影O恰好落在線段AC上,如圖2所示.點E、F分別為棱PC,CD的中點.
(1)求證:平面OEF∥平面APD;
(2)求證:CD⊥平面POF;
(3)在棱PC上是否存在一點M,使得M到P,O,C,F四點距離相等?請說明理由.
查看答案和解析>>
科目: 來源:2013-2014學年(安徽專用)高考數學(文)仿真模擬卷2練習卷(解析版) 題型:解答題
已知公差不為0的等差數列{an},a1=1,且a2,a4-2,a6成等比數列.
(1)求數列{an}的通項公式;
(2)已知數列{bn}的通項公式是bn=2n-1,集合A={a1,a2,…,an,…},B={b1,b2,b3,…,bn,…}.將集合A∩B中的元素按從小到大的順序排成一個新的數列{cn},求數列{cn}的前n項和Sn.
查看答案和解析>>
科目: 來源:2013-2014學年(安徽專用)高考數學(文)仿真模擬卷2練習卷(解析版) 題型:解答題
已知f(x)=x2-2x-ln(x+1)2.
(1)求f(x)的單調遞增區(qū)間;
(2)若函數F(x)=f(x)-x2+3x+a在上只有一個零點,求實數a的取值范圍.
查看答案和解析>>
科目: 來源:2013-2014學年(安徽專用)高考數學(文)仿真模擬卷2練習卷(解析版) 題型:解答題
過橢圓Γ:=1(a>b>0)右焦點F2的直線交橢圓于A,B兩點,F1為其左焦點,已知△AF1B的周長為8,橢圓的離心率為.
(1)求橢圓Γ的方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓Γ恒有兩個交點P,Q,且⊥?若存在,求出該圓的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com