相關(guān)習(xí)題
 0  169827  169835  169841  169845  169851  169853  169857  169863  169865  169871  169877  169881  169883  169887  169893  169895  169901  169905  169907  169911  169913  169917  169919  169921  169922  169923  169925  169926  169927  169929  169931  169935  169937  169941  169943  169947  169953  169955  169961  169965  169967  169971  169977  169983  169985  169991  169995  169997  170003  170007  170013  170021  266669 

科目: 來源:不詳 題型:單選題

在某項測量中得到的A樣奉數(shù)據(jù)如下:82、84、84、86、86、86、88、88、88、88,若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)每個都加2后所得的數(shù)據(jù),則A、B兩樣本的下列數(shù)字特征對應(yīng)相同的是(  。
A.眾數(shù)      B.平均數(shù)
C.中位數(shù)    D.標準差

查看答案和解析>>

科目: 來源:不詳 題型:解答題

衡水某中學(xué)對高二甲、乙兩個同類班級進行“加強‘語文閱讀理解’訓(xùn)練對提高‘?dāng)?shù)學(xué)應(yīng)用題’得分率作用”的試驗,其中甲班為試驗班(加強語文閱讀理解訓(xùn)練),乙班為對比班(常規(guī)教學(xué),無額外訓(xùn)練),在試驗前的測試中,甲、乙兩班學(xué)生在數(shù)學(xué)應(yīng)用題上的得分率基本一致,試驗結(jié)束后,統(tǒng)計幾次數(shù)學(xué)應(yīng)用題測試的平均成績(均取整數(shù))如下表所示:
 
60分
以下
61~
70分
71~
80分
81~
90分
91~
100分
甲班
(人數(shù))
3
6
11
18
12
乙班
(人數(shù))
4
8
13
15
10
現(xiàn)規(guī)定平均成績在80分以上(不含80分)的為優(yōu)秀.
(1)試分別估計兩個班級的優(yōu)秀率.
(2)由以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷“加強‘語文閱讀理解’訓(xùn)練對提高‘?dāng)?shù)學(xué)應(yīng)用題’得分率”是否有幫助?
 
優(yōu)秀人數(shù)
非優(yōu)秀人數(shù)
總計
甲班
 
 
 
乙班
 
 
 
總計
 
 
 
參考公式及數(shù)據(jù):K2=,

查看答案和解析>>

科目: 來源:不詳 題型:解答題

某校高三某班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下圖,據(jù)此解答如下問題:

(1)求分數(shù)在[50,60)的頻率及全班的人數(shù).
(2)求分數(shù)在[80,90)之間的頻數(shù),并計算頻率分布直方圖中[80,90)間的矩形的高.
(3)若要從分數(shù)在[80,100]之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份在[90,100]之間的概率.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

根據(jù)空氣質(zhì)量指數(shù)API(為整數(shù))的不同,可將空氣質(zhì)量分級如下表:
API
0~50
51~
100
101~
150
151~
200
201~
250
251~
300
>300
級 別


1
2
1
2

狀 況
優(yōu)

輕微
污染
輕度
污染
中度
污染
中度
重污染
重度
污染
 





對某城市一年(365天)的空氣質(zhì)量進行監(jiān)測,獲得的API數(shù)據(jù)按照區(qū)間[0,50],(50,100],(100,150],(150,200],(200,250],(250,300]進行分組,得到頻率分布直方圖如圖.

(1)求直方圖中x的值.
(2)計算一年中空氣質(zhì)量分別為良和輕微污染的天數(shù).
(3)求該城市某一周至少有2天的空氣質(zhì)量為良或輕微污染的概率.
(結(jié)果用分數(shù)表示.
已知57=78125,27=128,++++=,365=73×5).

查看答案和解析>>

科目: 來源:不詳 題型:解答題

為緩解某路段交通壓力,計劃將該路段實施“交通限行”.在該路段隨機抽查了50人,了解公眾對“該路段限行”的態(tài)度,將調(diào)查情況進行整理,制成下表:
年齡
(歲)
[15,25)
[25,35)
[35,45)
[45,55)
[55,65)
[65,75]
頻 數(shù)
5
10
15
10
5
5
贊成
人數(shù)
4
8
9
6
4
3
(1)作出被調(diào)查人員年齡的頻率分布直方圖.
(2)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機選取兩人進行追蹤調(diào)查,記選中的4人中不贊成“交通限行”的人數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

某班同學(xué)利用國慶節(jié)進行社會實踐,對[25,55]歲的人群隨機抽取n人進行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:
組 數(shù)
分 組
低碳族的人數(shù)
占本組的頻率
第一組
[25,30)
120
0.6
第二組
[30,35)
195
p
第三組
[35,40)
100
0.5
第四組
[40,45)
a
0.4
第五組
[45,50)
30
0.3
第六組
[50,55]
15
0.3
 

(1)補全頻率分布直方圖并求n,a,p的值.
(2)為調(diào)查該地區(qū)的年齡與生活習(xí)慣和是否符合低碳觀念有無關(guān)系,調(diào)查組按40歲以下為青年,40歲以上(含40歲)為老年分成兩組,請你先完成下面2×2列聯(lián)表,并回答是否有99%的把握認為該地區(qū)的生活習(xí)慣是否符合低碳觀念與人的年齡有關(guān).
參考公式:χ2=
P(χ2≥x0)
0.050
0.010
0.001
x0
3.841
6.635
10.828
 
年齡組
是否低碳族
青 年
老 年
總 計
低碳族
 
 
 
非低碳族
 
 
 
總計
 
 
 
 

查看答案和解析>>

科目: 來源:不詳 題型:單選題

關(guān)于統(tǒng)計數(shù)據(jù)的分析,有以下幾個結(jié)論,其中正確的個數(shù)為( )
①利用殘差進行回歸分析時,若殘差點比較均勻地落在寬度較窄的水平帶狀區(qū)域內(nèi),則說明線性回歸模型的擬合精度較高;
②將一組數(shù)據(jù)中的每個數(shù)據(jù)都減去同一個數(shù)后,期望與方差均沒有變化;
③調(diào)查劇院中觀眾觀后感時,從50排(每排人數(shù)相同)中任意抽取一排的人進行調(diào)查是分層抽樣法;
④已知隨機變量X服從正態(tài)分布N(3,1),且P(2≤X≤4)=0.682 6,則P(X>4)等于0.158 7
⑤某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人.為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本.若樣本中的青年職工為7人,則樣本容量為15人。
A.2B.3C.4 D.5

查看答案和解析>>

科目: 來源:不詳 題型:解答題

今年年初,我國多個地區(qū)發(fā)生了持續(xù)性大規(guī)模的霧霾天氣,給我們的身體健康產(chǎn)生了巨大的威脅。私家車的尾氣排放也是造成霧霾天氣的重要因素之一,因此在生活中我們應(yīng)該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預(yù)防霧霾出一份力。為此,很多城市實施了機動車車尾號限行,我市某報社為了解市區(qū)公眾對“車輛限行”的態(tài)度,隨機抽查了50人,將調(diào)查情況進行整理后制成下表:
年齡(歲)
[15,25)
[25,35)
[35,45)
[45,55)
[55,65)
[65,75]
頻數(shù)
5
10
15
10
5
5
贊成人數(shù)
4
6
9
6
3
4
(1)完成被調(diào)查人員的頻率分布直方圖;
(2)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機選取兩人進行進行追蹤調(diào)查,記選中的4人中不贊成“車輛限行”的人數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

在某高校自主招生考試中,所有選報II類志向的考生全部參加了“數(shù)學(xué)與邏輯”和“閱讀與表達”兩個科目的考試,成績分為五個等級. 某考場考生的兩科考試成績數(shù)據(jù)統(tǒng)計如下圖所示,其中“數(shù)學(xué)與邏輯”科目的成績?yōu)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041205781292.png" style="vertical-align:middle;" />的考生有人.

(1)求該考場考生中“閱讀與表達”科目中成績?yōu)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041205812298.png" style="vertical-align:middle;" />的人數(shù);
(2)若等級分別對應(yīng)分,分,分,分,分,求該考場考生“數(shù)學(xué)與邏輯”科目的平均分;
(3)已知參加本考場測試的考生中,恰有兩人的兩科成績均為. 在至少一科成績?yōu)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041205812298.png" style="vertical-align:middle;" />的考生中,隨機抽取兩人進行訪談,求這兩人的兩科成績均為的概率.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),在培訓(xùn)期間,他們參加的次預(yù)賽成績記錄如下: 
甲                    乙               
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)從甲、乙兩人的成績中各隨機抽取一個,求甲的成績比乙高的概率;
(3)①求甲、乙兩人的成績的平均數(shù)與方差,②若現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,
根據(jù)你的計算結(jié)果,你認為選派哪位學(xué)生參加合適?

查看答案和解析>>

同步練習(xí)冊答案