科目: 來源:2012學(xué)年浙江省杭州七校高一第二學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:填空題
已知函數(shù),,若對任意的恒成立,則▲
查看答案和解析>>
科目: 來源:2012學(xué)年浙江省杭州七校高一第二學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:填空題
已知函數(shù),的圖像與直線的兩個相鄰交點的距離等于,則滿足不等式的取值范圍是___▲ __
查看答案和解析>>
科目: 來源:2012學(xué)年浙江省杭州七校高一第二學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:填空題
已知兩個不共線的向量,且,若點M在直線OB上(與方向相同),當的最小值為時,則___▲_____
查看答案和解析>>
科目: 來源:2012學(xué)年浙江省杭州七校高一第二學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題
已知,,
(Ⅰ)求的值;
(Ⅱ)求的值。
【解析】第一問中,因為,∴
∴或又∴
第二問中原式=
=進而得到結(jié)論。
(Ⅰ)解:∵∴
∴或……………………………………3分
又∴……………………………2分
(Ⅱ) 解:原式= ……………………2分
=…………2分
=
查看答案和解析>>
科目: 來源:2012學(xué)年浙江省杭州七校高一第二學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題
已知△ABC的內(nèi)角滿足若, 且滿足:,,為與的夾角.
(Ⅰ)求;
(Ⅱ)求;
【解析】第一問利用二倍角公式化簡∵∴∴∴或(舍去)又角B是△ABC的內(nèi)角∴
第二問中∵,,為與的夾角
∴=又∴,∴==
(Ⅰ) 解:∵∴
∴∴或(舍去)…………2分
又角B是△ABC的內(nèi)角∴ ………………2分
(Ⅱ) 解:∵,,為與的夾角
∴= ………………2分
又∴,………………2分
∴==
查看答案和解析>>
科目: 來源:2012學(xué)年浙江省杭州七校高一第二學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)f (x)=sin 2x+(sin x-cos x)(sin x+cos x),其中x∈R.
(Ⅰ) 該函數(shù)的圖象可由 的圖象經(jīng)過怎樣的平移和伸縮變換得到?
(Ⅱ)若f (θ)=,其中,求cos(θ+)的值;
【解析】第一問中,
即變換分為三步,①把函數(shù)的圖象向右平移,得到函數(shù)的圖象;
②令所得的圖象上各點的縱坐標不變,把橫坐標縮短到原來的倍,得到函數(shù)的圖象;
③令所得的圖象上各點的橫坐標不變,把縱坐標伸長到原來的2倍,得到函數(shù)的圖象;
第二問中因為,所以,則,又 ,,從而
進而得到結(jié)論。
(Ⅰ) 解:
即。…………………………………3分
變換的步驟是:
①把函數(shù)的圖象向右平移,得到函數(shù)的圖象;
②令所得的圖象上各點的縱坐標不變,把橫坐標縮短到原來的倍,得到函數(shù)的圖象;
③令所得的圖象上各點的橫坐標不變,把縱坐標伸長到原來的2倍,得到函數(shù)的圖象;…………………………………3分
(Ⅱ) 解:因為,所以,則,又 ,,從而……2分
(1)當時,;…………2分
(2)當時;
查看答案和解析>>
科目: 來源:2012學(xué)年浙江省杭州七校高一第二學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),
(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)令函數(shù)(),求函數(shù)的最大值的表達式;
【解析】第一問中利用令,,
∴,
第二問中,=
=
=令, ,則借助于二次函數(shù)分類討論得到最值。
(Ⅰ)解:令,,
∴,
∴的單調(diào)遞減區(qū)間為:…………………4分
(Ⅱ)解:=
=
=
令, ,則……………………4分
對稱軸
① 當即時,=……………1分
② 當即時,=……………1分
③ 當即時, ……………1分
綜上:
查看答案和解析>>
科目: 來源:2012學(xué)年浙江省杭州七校高一第二學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題
在中,滿足,是邊上的一點.
(Ⅰ)若,求向量與向量夾角的正弦值;
(Ⅱ)若,=m (m為正常數(shù)) 且是邊上的三等分點.,求值;
(Ⅲ)若且求的最小值。
【解析】第一問中,利用向量的數(shù)量積設(shè)向量與向量的夾角為,則
令=,得,又,則為所求
第二問因為,=m所以,
(1)當時,則=
(2)當時,則=
第三問中,解:設(shè),因為,;
所以即于是得
從而
運用三角函數(shù)求解。
(Ⅰ)解:設(shè)向量與向量的夾角為,則
令=,得,又,則為所求……………2分
(Ⅱ)解:因為,=m所以,
(1)當時,則=;-2分
(2)當時,則=;--2分
(Ⅲ)解:設(shè),因為,;
所以即于是得
從而---2分
==
=…………………………………2分
令,則,則函數(shù),在遞減,在上遞增,所以從而當時,
查看答案和解析>>
科目: 來源:2011-2012學(xué)年上海市崇明縣高三高考模擬考試二模理科數(shù)學(xué)試卷(解析版) 題型:填空題
已知,若(為虛數(shù)單位)為純虛數(shù),則的值等于 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com