相關習題
 0  108090  108098  108104  108108  108114  108116  108120  108126  108128  108134  108140  108144  108146  108150  108156  108158  108164  108168  108170  108174  108176  108180  108182  108184  108185  108186  108188  108189  108190  108192  108194  108198  108200  108204  108206  108210  108216  108218  108224  108228  108230  108234  108240  108246  108248  108254  108258  108260  108266  108270  108276  108284  266669 

科目: 來源:2009-2010學年安徽省巢湖市廬江縣樂橋中學高三(下)數(shù)學滾動練習試卷(解析版) 題型:解答題

已知函數(shù)y=loga(x-1)+1(a>0,且a≠1)的圖象恒過定點A,若點A在一次函數(shù)y=mx+n的圖象上,其中
最小值為   

查看答案和解析>>

科目: 來源:2009-2010學年安徽省巢湖市廬江縣樂橋中學高三(下)數(shù)學滾動練習試卷(解析版) 題型:解答題

函數(shù)f(x)對于任意實數(shù)x滿足條件f(x+2)=,若f(1)=-5,則f[f(5)]=   

查看答案和解析>>

科目: 來源:2009-2010學年安徽省巢湖市廬江縣樂橋中學高三(下)數(shù)學滾動練習試卷(解析版) 題型:解答題

設函數(shù).若f(x)+f′(x)是奇函數(shù),則φ=   

查看答案和解析>>

科目: 來源:2009-2010學年安徽省巢湖市廬江縣樂橋中學高三(下)數(shù)學滾動練習試卷(解析版) 題型:解答題

(b>a)=   

查看答案和解析>>

科目: 來源:2009-2010學年安徽省巢湖市廬江縣樂橋中學高三(下)數(shù)學滾動練習試卷(解析版) 題型:解答題

已知:函數(shù)f(x)=ax++c(a、b、c是常數(shù))是奇函數(shù),且滿足f(1)=,f(2)=
(Ⅰ)求a、b、c的值;
(Ⅱ)試判斷函數(shù)f(x)在區(qū)間(0,)上的單調(diào)性并說明理由;
(Ⅲ)試求函數(shù)f(x)在區(qū)間(0,+∞)上的最小值.

查看答案和解析>>

科目: 來源:2009-2010學年安徽省巢湖市廬江縣樂橋中學高三(下)數(shù)學滾動練習試卷(解析版) 題型:解答題

已知函數(shù)
(1)若f(x)=2,求x的值;
(2)若3tf(2t)+mf(t)≥0對于恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源:2009-2010學年安徽省巢湖市廬江縣樂橋中學高三(下)數(shù)學滾動練習試卷(解析版) 題型:解答題

已知直線l1為曲線f(x)=x3+x-2在點(1,0)處的切線,直線l2為該曲線的另一條切線,且l2的斜率為1
(Ⅰ)求直線l1、l2的方程
(Ⅱ)求由直線l1、l2和x軸所圍成的三角形面積.

查看答案和解析>>

科目: 來源:2009-2010學年安徽省巢湖市廬江縣樂橋中學高三(下)數(shù)學滾動練習試卷(解析版) 題型:解答題

已知函數(shù)f(x)=3x+k(k為常數(shù)),A(-2k,2)是函數(shù)y=f-1(x)圖象上的點.
(1)求實數(shù)k的值及函數(shù)f-1(x)的解析式;
(2)將y=f-1(x)的圖象按向量a=(3,0)平移,得到函數(shù)y=g(x)的圖象,若2 f-1(x+-3)-g(x)≥1恒成立,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源:2009-2010學年安徽省巢湖市廬江縣樂橋中學高三(下)數(shù)學滾動練習試卷(解析版) 題型:解答題

設函數(shù)f(x)=
(Ⅰ)若f(x)在x=1,x=處取得極值,
(i)求a、b的值;
(ii)在存在x,使得不等式f(xo)-c≤0成立,求c最小值
(Ⅱ)當b=a時,若f(x)在(0,+∞)上是單調(diào)函數(shù),求a的取值范圍.
(參考數(shù)據(jù)e2≈7.389,e3≈20.08)

查看答案和解析>>

科目: 來源:2009-2010學年安徽省巢湖市廬江縣樂橋中學高三(下)數(shù)學滾動練習試卷(解析版) 題型:解答題

已知二次函數(shù)f(x)=ax2+bx+c.
(1)若f(-1)=0,試判斷函數(shù)f(x)零點個數(shù);
(2)若對?x1,x2∈R,且x1<x2,f(x1)≠f(x2),試證明?x∈(x1,x2),使成立.
(3)是否存在a,b,c∈R,使f(x)同時滿足以下條件①對?x∈R,f(x-4)=f(2-x),且f(x)≥0;②對?x∈R,都有.若存在,求出a,b,c的值,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案