相關(guān)習題
 0  102509  102517  102523  102527  102533  102535  102539  102545  102547  102553  102559  102563  102565  102569  102575  102577  102583  102587  102589  102593  102595  102599  102601  102603  102604  102605  102607  102608  102609  102611  102613  102617  102619  102623  102625  102629  102635  102637  102643  102647  102649  102653  102659  102665  102667  102673  102677  102679  102685  102689  102695  102703  266669 

科目: 來源:2006-2007學年江蘇省南京市金陵中學高三數(shù)學綜合試卷(解析版) 題型:解答題

在斜三棱柱ABC-A′B′C′中,底面△ABC為正三角形,設AA′:AC=λ.頂點A′在底面ABC上的射影O是△ABC的中心,P為側(cè)棱CC′中點,G為△PA′B′的重心.
(Ⅰ)求證:OG∥平面AA′B′B;
(Ⅱ)當λ=時,求證:平面A′B′P⊥平面BB′C′C;
(Ⅲ)當λ=1時,求二面角C-A′B-P的大小.

查看答案和解析>>

科目: 來源:2006-2007學年江蘇省南京市金陵中學高三數(shù)學綜合試卷(解析版) 題型:解答題

定義域均為R的奇函數(shù)f(x)與偶函數(shù)g(x)滿足f(x)+g(x)=10x
(Ⅰ)求函數(shù)f(x)與g(x)的解析式;
(Ⅱ)求函數(shù)f(x)的反函數(shù);
(Ⅲ)證明:g(x1)+g(x2)≥2g();
*(Ⅳ)試用f(x1),f(x2),g(x1),g(x2)表示f(x1-x2)與g(x1+x2).

查看答案和解析>>

科目: 來源:2006-2007學年江蘇省南京市金陵中學高三數(shù)學綜合試卷(解析版) 題型:解答題

設橢圓C:+=1的左焦點為F,左準線為l,一條直線過點F與橢圓C交于A,B兩點,若直線l上存在點P,使△ABP為等邊三角形,求直線AB的方程.

查看答案和解析>>

科目: 來源:2006-2007學年江蘇省南京市金陵中學高三數(shù)學綜合試卷(解析版) 題型:解答題

設O為坐標原點,A(-,0),點M在定直線x=-p(p>0)上移動,點N在線段MO的延長線上,且滿足=
(Ⅰ)求動點N的軌跡方程,并說明軌跡是什么曲線?
(Ⅱ)若|AN|的最大值≤,求p的取值范圍.

查看答案和解析>>

科目: 來源:2006-2007學年江蘇省南京市金陵中學高三數(shù)學綜合試卷(解析版) 題型:解答題

中心在原點的雙曲線C1的一個焦點與拋物線C2:y2=8x的焦點F重合,拋物線C2的準線l與雙曲線C1的一個交點為A,且|AF|=5.
(Ⅰ)求雙曲線C1的方程;
(Ⅱ)若過點B(0,1)的直線m與雙曲線C1相交于不同兩點M,N,且
①求直線m的斜率k的變化范圍;
②當直線m的斜率不為0時,問在直線y=x上是否存在一定點C,使⊥()?若存在,求出點C的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:2006-2007學年江蘇省南京市金陵中學高三數(shù)學綜合試卷(解析版) 題型:解答題

已知正項數(shù)列{ an }滿足Sn+Sn-1=+2 (n≥2,t>0),a1=1,其中Sn是數(shù)列{ an }的前n項和.
(Ⅰ)求通項an
(Ⅱ)記數(shù)列{}的前n項和為Tn,若Tn<2對所有的n∈N*都成立.求證:0<t≤1.

查看答案和解析>>

科目: 來源:2006-2007學年江蘇省南京市金陵中學高三數(shù)學綜合試卷(解析版) 題型:解答題

已知函數(shù)f(x)=x4+ax3+bx2+c,其圖象在y軸上的截距為-5,在區(qū)間[0,1]上單調(diào)遞增,在[1,2]上單調(diào)遞減,又當x=0,x=2時取得極小值.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)能否找到垂直于x軸的直線,使函數(shù)f(x)的圖象關(guān)于此直線對稱,并證明你的結(jié)論;
*(Ⅲ)設使關(guān)于x的方程f(x)=λ2x2-5恰有三個不同實根的實數(shù)λ的取值范圍為集合A,且兩個非零實根為x1、x2.試問:是否存在實數(shù)m,使得不等式m2+tm+2≤|x1-x2|對任意t∈[-3,3],λ∈A恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:2006-2007學年江蘇省南京市金陵中學高三數(shù)學綜合試卷(解析版) 題型:解答題

某工廠有一個容量為300噸的水塔,每天從早上6時起到晚上10時止供應該廠的生產(chǎn)和生活用水,已知該廠生活用水為每小時10噸,工業(yè)用水量W(噸)與時間t(小時,且規(guī)定早上6時t=0)的函數(shù)關(guān)系為W=100.水塔的進水量分為10級,第一級每小時進水10噸,以后每提高一級,每小時進水量就增加10噸.若某天水塔原有水100噸,在開始供水的同時打開進水管,問進水量選擇為第幾級時,既能保證該廠的用水(水塔中水不空)又不會使水溢出?

查看答案和解析>>

科目: 來源:2006-2007學年江蘇省南京市金陵中學高三數(shù)學綜合試卷(解析版) 題型:解答題

已知等差數(shù)列{an}的首項為a,公差為b;等比數(shù)列{bn}的首項為b,公比為a,其中a,b∈N+,且a1<b1<a2<b2<a3
(Ⅰ)求a的值;
(Ⅱ)若對于任意n∈N*,總存在m∈N*,使am+3=bn,求b的值;
(Ⅲ)甲說:一定存在b使得對n∈N*恒成立;乙說:一定存在b使得對n∈N*恒成立.你認為他們的說法是否正確?為什么?

查看答案和解析>>

科目: 來源:2009-2010學年湖北省部分重點中學高三第一次聯(lián)考數(shù)學試卷(文科)(解析版) 題型:選擇題

已知全集I={1,2,3,4,5,6},集合A={1,3,4,5},集合B={1,4},則A∩CIB等于( )
A.{1,4}
B.{2,6}
C.{3,5}
D.{2,3,5,6}

查看答案和解析>>

同步練習冊答案