相關(guān)習(xí)題
 0  102200  102208  102214  102218  102224  102226  102230  102236  102238  102244  102250  102254  102256  102260  102266  102268  102274  102278  102280  102284  102286  102290  102292  102294  102295  102296  102298  102299  102300  102302  102304  102308  102310  102314  102316  102320  102326  102328  102334  102338  102340  102344  102350  102356  102358  102364  102368  102370  102376  102380  102386  102394  266669 

科目: 來(lái)源:2011-2012學(xué)年湖北省孝感市安陸一中高三數(shù)學(xué)綜合檢測(cè)題13(不等式)(解析版) 題型:解答題

不等式的解集為   

查看答案和解析>>

科目: 來(lái)源:2011-2012學(xué)年湖北省孝感市安陸一中高三數(shù)學(xué)綜合檢測(cè)題13(不等式)(解析版) 題型:解答題

已知a,b是實(shí)數(shù),二次方程x2-ax+b=0的一個(gè)根在[-1,1]上,另一個(gè)根在[1,2]上,則a-2b的最大值為   

查看答案和解析>>

科目: 來(lái)源:2011-2012學(xué)年湖北省孝感市安陸一中高三數(shù)學(xué)綜合檢測(cè)題13(不等式)(解析版) 題型:解答題

對(duì)任意x∈R,|2-x|+|3+x|≥a2-4a恒成立,則a的取值范圍是   

查看答案和解析>>

科目: 來(lái)源:2011-2012學(xué)年湖北省孝感市安陸一中高三數(shù)學(xué)綜合檢測(cè)題13(不等式)(解析版) 題型:解答題

若不等式|3x-b|<4的解集中的整數(shù)有且僅有1,2,3,則b的取值范圍    

查看答案和解析>>

科目: 來(lái)源:2011-2012學(xué)年湖北省孝感市安陸一中高三數(shù)學(xué)綜合檢測(cè)題13(不等式)(解析版) 題型:解答題

已知a,b∈(0,+∞),,則的最大值是   

查看答案和解析>>

科目: 來(lái)源:2011-2012學(xué)年湖北省孝感市安陸一中高三數(shù)學(xué)綜合檢測(cè)題13(不等式)(解析版) 題型:解答題

如果{x|x<-2或x>3}⊆{x|2ax2+(2-ab)x-b>0},其中b>0,求a,b的取值范圍.

查看答案和解析>>

科目: 來(lái)源:2011-2012學(xué)年湖北省孝感市安陸一中高三數(shù)學(xué)綜合檢測(cè)題13(不等式)(解析版) 題型:解答題

已知函數(shù)(a,b為常數(shù))且方程f(x)-x+12=0有兩個(gè)實(shí)根為x1=3,x2=4.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)k>1,解關(guān)于x的不等式;

查看答案和解析>>

科目: 來(lái)源:2011-2012學(xué)年湖北省孝感市安陸一中高三數(shù)學(xué)綜合檢測(cè)題13(不等式)(解析版) 題型:解答題

若數(shù)列{an}的前n項(xiàng)和為Sn,a1=2且Sn+1=4an-2(n=1,2,3…).
(I)求a2,a3;
(II)求證:數(shù)列{an-2an-1}是常數(shù)列;
(III)求證:

查看答案和解析>>

科目: 來(lái)源:2011-2012學(xué)年湖北省孝感市安陸一中高三數(shù)學(xué)綜合檢測(cè)題13(不等式)(解析版) 題型:解答題

某城市2001年末汽車(chē)保有量為30萬(wàn)輛,預(yù)計(jì)此后每年報(bào)廢上一年末汽車(chē)保有量的6%,并且每年新增汽車(chē)數(shù)量相同.為保護(hù)城市環(huán)境,要求該城市汽車(chē)保有量不超過(guò)60萬(wàn)輛,那么每年新增汽車(chē)數(shù)量不應(yīng)超過(guò)多少輛?

查看答案和解析>>

科目: 來(lái)源:2011-2012學(xué)年湖北省孝感市安陸一中高三數(shù)學(xué)綜合檢測(cè)題13(不等式)(解析版) 題型:解答題

已知函數(shù)f(x)=x2+bx+c(b,c∈R),對(duì)任意的x∈R,恒有f′(x)≤f(x).
(Ⅰ)證明:當(dāng)x≥0時(shí),f(x)≤(x+c)2;
(Ⅱ)若對(duì)滿(mǎn)足題設(shè)條件的任意b,c,不等式f(c)-f(b)≤M(c2-b2)恒成立,求M的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案