設(shè)函數(shù)f(x)=
1
3
 x3+bx2+cx(c<b<1)在x=1處取到一個(gè)極小值,且存在實(shí)數(shù)m,使f′(m)=-1,
①證明:-3<c≤-1;
②判斷f′(m-4)的正負(fù)并加以證明;
③若f(x)在x∈[m-4,1]上的最大值等于
-2c
3
,求f(x)在x∈[m-4,1]上的最小值.
分析:①存在實(shí)數(shù)m,使f′(m)=-1,得到關(guān)于m的一元二次方程有實(shí)數(shù)根,用根的判別式列出關(guān)于b、c的不等式,結(jié)合函數(shù)在x=1處取到極小值,說明f′(1)=0,消去b得到關(guān)于c的一元二次不等式,最后結(jié)合c<b<1解出c取值范圍.
②函數(shù)的導(dǎo)數(shù)是關(guān)于x的二次函數(shù),其圖象開口向上,在區(qū)間(c,1)上取值為負(fù),而f′(m)=-1為負(fù),得到-3<c<m<1,從而得到-7<m-4<-3,因此f′(m-4)的符號(hào)為正.
③由②f′(m-4)>0且在x=1時(shí)函數(shù)f(x)取到極小值,得到函數(shù)f(x)的單調(diào)性:在(-∞,c)和(1,+∞)上為增函數(shù),在(c,1)上為減函數(shù).因此m-4≤c,f(x)在x∈[m-4,1]上的最大值為f(c),從而解出c=-1且m=0,得出函數(shù)的表達(dá)式為f(x)=
1
3
 x3-x,最后可得f(x)在x∈[-4,1]上的最小值.
解答:解:精英家教網(wǎng)①求出f′(x)=x2+2bx+c;
∴f′(1)=1+2b+c=0⇒b=
-1-c
2
且f′(m)=m2+(-1-c)m+c=-1;
∴m2-(1+c)m+c+1=0,
∴△=(1+c)2-4(1+c)≥0,則c≥3或c≤-1;
又∵b=
-1-c
2
<1
∴c>-3;又b=
-1-c
2
>c,則有c<
-1
3
,∴-3<c≤-1.…(4分)
②f′(x)=x2+(-1-c)x+c=(x-c) (x-1),
其圖象開口向上,對(duì)稱軸為:-1<x0=
1+c
2
<0;
∵f′(m)=-1<0,
∴-3<c<m<1;
則-7<m-4<-3⇒f′(m-4)>0;…(9分)
③由于f′(m-4)>0;
∵函數(shù)f(x)在x=1處取到一個(gè)極小值,
∴函數(shù)f(x)在(-∞,c)和(1,+∞)上為增函數(shù),在(c,1)上為減函數(shù),
∴m-4≤c,
f(x)在x∈[m-4,1]上的最大值等于f(c)=
1
3
 c3+
(-1-c)
2
•c2+c2=
-2c
3
,
∴c=-1,或c=4(舍去);
由f′(m)=-1,可得m=0,則f(x)=
1
3
 x3-x,(x∈[-4,1])
∴函數(shù)的最小值為f(-4)=
-52
3
.…(13分)
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)研究函數(shù)的極值、函數(shù)在某點(diǎn)取得極值的條件和得用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值等知識(shí)點(diǎn),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江西模擬)設(shè)函數(shù)f(x)=
(
1
3
)
x
-8(x<0)
x2+x-1(x≥0)
,若f(a)>1,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)定義在實(shí)數(shù)集上,它的圖象關(guān)于直線x=1對(duì)稱,且當(dāng)x≥1時(shí),f(x)=3x-1,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)镈,若對(duì)任意x1,x2∈D,當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)在[0,1]上為非減函數(shù),且滿足以下三個(gè)條件:①f(0)=0;②f(
x
3
)=
1
2
f(x)
;③f(1-x)=2-f(x).則f(
1
3
)+f(
1
8
)
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•成都一模)設(shè)函數(shù)f(x)=ax3+bx2+cx,記f(x)的導(dǎo)函數(shù)是f(x).
(I)當(dāng)a=-1,b=c=-1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(II)當(dāng)c=-a2(a>0)時(shí),若函數(shù)f(x)的兩個(gè)極值點(diǎn)x1、x2滿足|x1-x2|=2,求b的取值范圍;
(III)若a=-
1
3
令h(x)=|f(x)|,記h(x)在[-1,1]上的最大值為H,當(dāng)b≥0,c∈R時(shí),證明:H
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案