已知函數(shù)f(x)=x2+ax,g(x)=bx3+x.
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點C(1,m)處具有公共切線,求實數(shù)m的值;
(2)當b=
1
3
,a=-4時,求函數(shù)F(x)=f(x)+g(x)在區(qū)間[-3,4]上的最大值.
考點:利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)根據(jù)曲線y=f(x)與曲線y=g(x)在它們的交點(1,c)處具有公共切線,可知切點處的函數(shù)值相等,切點處的斜率相等,故可求a、b的值;
(2)當b=
1
3
,a=-4時時,則F(x)=f(x)+g(x)=
1
3
x3+x2-3x,求導(dǎo)函數(shù),確定函數(shù)極值,再求出區(qū)間上的端點值,比較大小即可.
解答: 解:(1)f(x)=x2+ax,
則f'(x)=2x+a,k1=2+a,
g(x)=bx3+x,
則g'(x)=3bx2+1,k2=3b+1,
由(1,c)為公共切點,可得:2+a=3b+1  ①
又f(1)=a+1,g(1)=1+b,
∴a+1=1+b,即a=b,代入①式可得:a=
1
2
,b=
1
2

(2)當b=
1
3
,a=-4時,F(xiàn)(x)=f(x)+g(x)=)=
1
3
x3+x2-3x,
則F′(x)=x2+2x-3=(x+3)(x-1),
令F'(x)=0,解得:x1=-3,x2=1;
當x∈(-∞,-3)⇒F'(x)>0⇒函數(shù)F(x)單調(diào)遞增,
當x∈[-3,1)⇒F'(x)<0⇒函數(shù)F(x)單調(diào)遞減,
當x∈(1,+4]⇒F'(x)>0⇒函數(shù)F(x)單調(diào)遞增,
∵F(-3)=9,F(xiàn)(4)=
76
3

∴函數(shù)F(x)=f(x)+g(x)在區(qū)間[-3,4]上的最大值為
76
3
點評:本題考查導(dǎo)數(shù)知識的運用,考查導(dǎo)數(shù)的幾何意義,考查函數(shù)的單調(diào)性與最值,解題的關(guān)鍵是正確求出導(dǎo)函數(shù).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)集合A={y|y=x2,x∈R},B={y|y=ex,x∈R},則A∩B=( 。
A、(0,+∞)
B、(-∞,0)
C、[0,+∞)
D、(-∞,0]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=f(x)是定義在(1,4)上的單調(diào)遞減函數(shù),且f(2t-1)-f(t)<0,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=f(x)在(0,+∞)上是單調(diào)遞增函數(shù),則f(a2-a+3)與f(2)的大小關(guān)系是:
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點O為△ABC內(nèi)一點,且
OA
+2
OB
+3
OC
=
0
,則△AOB,△AOC,△BOC的面積之比等于( 。
A、9:4:1
B、1:4:9
C、3:2:1
D、1:2:3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P,Q,R分別在三棱錐S-ABC的三條側(cè)棱SA,SB,SC上,且PQ與AB交于點D,PR與AC交于點E,RQ與BC交于點F,求證:D,E,F(xiàn)三點共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)=(1+x)10,g(x)=a0+a1x+a2x2+…+a10x10,h(x)=b0+b1x+b2x2+…+b9x9,若f2(-2x)=f(-x)g(x)+h(x),則a9=( 。
A、0
B、20×2020
C、-20×2020
D、420

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在北緯45°的緯度圈上有A,B兩地,A在東經(jīng)13°,B在東經(jīng)73°,設(shè)地球半徑為R,則A,B兩地的球面距離是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=-x2+2x,x∈[-2,3]的單調(diào)遞減區(qū)間為
 

查看答案和解析>>

同步練習冊答案