已知向量=(,0),=(),=(cosα,sinα)( α∈R),則夾角的取值范圍是( )
A.[0,]
B.[]
C.[]
D.[]
【答案】分析:判斷出動點A的軌跡為圓,畫出圖象,結合圖象得到當OA與圓相切時,向量的夾角取得最值,解直角三角形OAC得到,求出夾角的最值.
解答:解:∵||=1
點A的軌跡是C為圓心,以1為半徑的圓
當OA與圓相切時,的夾角取得最值



的夾角的最小值為∠AOB=∠COB-∠COA=
的夾角的最大值為
故選C
點評:本題考查利用圓的定義判斷動點的軌跡、結合圖象求出最值、考查數(shù)學結合的數(shù)學思想方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知向量
OB
=(2,0),
OC
=(2,2),
CA
=(
2
cosθ,
2
sinθ)
α為
OA
OB
的夾角,則α的取值范圍是
[
π
12
12
]
[
π
12
,
12
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,0),
b
=(x,1)
,當x>0時,定義函數(shù)f(x)=
a
b
|
a
|+|
b
|

(1)求函數(shù)y=f(x)的反函數(shù)y=f-1(x);
(2)數(shù)列{an}滿足:a1=a>0,an+1=f(an),n∈N*,Sn為數(shù)列{an}的前n項和,
①證明:Sn<2a;
②當a=1時,證明:an
1
2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,0),
b
=(x,1)
,當x>0時,定義函數(shù)f(x)=
a
b
|
a
|+|
b
|

(1)求函數(shù)y=f(x)的反函數(shù)y=f-1(x);
(2)數(shù)列{an}滿足:a1=a>0,an+1=f(an),n∈N*,Sn為數(shù)列{an}的前n項和,則:
①當a=1時,證明:an
1
2n
;
②對任意θ∈[0,2π],當2asinθ-2a+Sn≠0時,
證明:
2asinθ+2a-Sn
2asinθ-2a+Sn
4a-Sn
Sn
2asinθ+2a-Sn
2asinθ-2a+Sn
Sn
4a-Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
OA
=(2, 0),  
OC
=
AB
=(0,  1)
,動點M(x,y)到直線y=1的距離等于d,并且滿足
OM
 • 
AM
=k(
CM
 • 
BM
-d2)
(其中O是坐標原點,k∈R).
(1)求動點M的軌跡方程,并說明軌跡是什么曲線;
(2)當k=
1
2
時,求|
OM
+2
AM
|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列四個命題,其中正確的是( 。
①已知向量
α
β
,則“
α
β
=0
”的充要條件是“
α
=
0
β
=
0
”;
②已知數(shù)列{an}和{bn},則“
lim
n→∞
anbn=0
”的充要條件是“
lim
n→∞
an=0
lim
n→∞
bn=0
”;
③已知z1,z2∈C,則“z1•z2=0”的充要條件是“z1=0或z2=0”;
④已知α,β∈R,則“sinα•cosβ=0”的充要條件是“α=kπ,(k∈Z)或β=
π
2
+kπ,(k∈Z)

查看答案和解析>>

同步練習冊答案