已知正項數(shù)列{an}的前n項和為Sn,且滿足Sn+Sn-1=+2(n≥2,n∈N*,k>0),a1=1.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{}的前n項和為Tn,是否存在常數(shù)k,使得Tn<2對所有的n∈N*都成立?若存在,求出k的取值范圍;若不存在,請說明理由.
【答案】分析:(1)再寫一式,兩式相減,即可得到結(jié)論;
(2)利用裂項求和,可得使得Tn<2對所有的n∈N*都成立,只需要k+k2≤2(k>0),即可得到結(jié)論.
解答:解:(1)∵Sn+Sn-1=+2,∴Sn+1+Sn=+2
兩式相減可得(an+1+an)[]=0
∵正項數(shù)列{an},
(n≥2)
∵S2+S1=+2,a1=1

∴an=;
(2)由題意,T1=k,
當(dāng)n≥2時,=k+=
∵Tn=<k+k2
∴使得Tn<2對所有的n∈N*都成立,只需要k+k2≤2(k>0),
∴0<k≤1.
點評:本題考查數(shù)列的通項與求和,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正項數(shù)列{an}滿足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*
(1)求證:數(shù)列{
an
2n+1
}
為等差數(shù)列,并求數(shù)列{an}的通項an
(2)設(shè)bn=
1
an
,求數(shù)列{bn}的前n項和為Sn,并求Sn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:稱
n
a1+a2+…+an
為n個正數(shù)a1,a2,…,an的“均倒數(shù)”,已知正項數(shù)列{an}的前n項的“均倒數(shù)”為
1
2n
,則
lim
n→∞
nan
sn
(  )
A、0
B、1
C、2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項數(shù)列an中,a1=2,點(
an
,an+1)
在函數(shù)y=x2+1的圖象上,數(shù)列bn中,點(bn,Tn)在直線y=-
1
2
x+3
上,其中Tn是數(shù)列bn的前項和.(n∈N+).
(1)求數(shù)列an的通項公式;
(2)求數(shù)列bn的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項數(shù)列{an}滿足a1=1,an+1=an2+2an(n∈N+),令bn=log2(an+1).
(1)求證:數(shù)列{bn}為等比數(shù)列;
(2)記Tn為數(shù)列{
1
log2bn+1log2bn+2
}
的前n項和,是否存在實數(shù)a,使得不等式Tn<log0.5(a2-
1
2
a)
對?n∈N+恒成立?若存在,求出實數(shù)a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項數(shù)列{an},Sn=
1
8
(an+2)2

(1)求證:{an}是等差數(shù)列;
(2)若bn=
1
2
an-30
,求數(shù)列{bn}的前n項和.

查看答案和解析>>

同步練習(xí)冊答案