.(本題滿分16分,其中第1小題4分,第2小題6分,第3小題6分,)

如圖,已知橢圓,,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)為頂點(diǎn)的三角形的周長為.一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線與橢圓的交點(diǎn)分別為.

(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;

(2)設(shè)直線、的斜率分別為,證明;

(3)是否存在常數(shù),使得

恒成立?若存在,求的值;若不存在,請(qǐng)說明理由.

 

 

 

 

 

 

【答案】

 

解(1)由題意知,橢圓中,,得,

,所以可解得,,所以,

所以橢圓的標(biāo)準(zhǔn)方程為;

所以橢圓的焦點(diǎn)坐標(biāo)為(,0),因?yàn)殡p曲線為等軸雙曲線,且頂點(diǎn)是該橢圓的焦點(diǎn),所以該雙曲線的標(biāo)準(zhǔn)方程為

(2)設(shè),則

因?yàn)辄c(diǎn)在雙曲線上,所以

因此   即

(3)由于的方程為,將其代入橢圓方程得

由韋達(dá)定理得

    同理可得

    則,又

    ∴,

    即存在, 使恒成立.

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

本題滿分16分)兩個(gè)數(shù)列{an},{bn},滿足bn=
a1+2a2+3a3+…+nan
1+2+3+…+n
.★(參考公式1+22+32+…+n2=
n(n+1)(2n+1)
6

求證:{bn}為等差數(shù)列的充要條件是{an}為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分)本題共有2個(gè)小題,第1小題滿分8分,第2小題滿分8分.

已知函數(shù)、是常數(shù),且),對(duì)定義域內(nèi)任意、),恒有成立.

(1)求函數(shù)的解析式,并寫出函數(shù)的定義域;

(2)求的取值范圍,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分)已知數(shù)列的前項(xiàng)和為,且.?dāng)?shù)列中,,

 .(1)求數(shù)列的通項(xiàng)公式;(2)若存在常數(shù)使數(shù)列是等比數(shù)列,求數(shù)列的通項(xiàng)公式;(3)求證:①;②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省私立無錫光華學(xué)校2009—2010學(xué)年高二第二學(xué)期期末考試 題型:解答題

本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題

(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)

已知函數(shù)

(1)判斷并證明上的單調(diào)性;

(2)若存在,使,則稱為函數(shù)的不動(dòng)點(diǎn),現(xiàn)已知該函數(shù)有且僅有一個(gè)不動(dòng)點(diǎn),求的值;

(3)若上恒成立 , 求的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案