已知數(shù)列{an}的各項排成如圖所示的三角形數(shù)陣,數(shù)陣中每一行的第一個數(shù)a1,a2,a4,a7,…構成等差數(shù)列{bn},Sn是{bn}的前n項和,且b1=a1=1,S5=15.
( I )若數(shù)陣中從第三行開始每行中的數(shù)按從左到右的順序均構成公比為正數(shù)的等比數(shù)列,且公比相等,已知a9=16,求a50的值;
(Ⅱ)設,當m∈[-1,1]時,對任意n∈N*,不等式恒成立,求t的取值范圍.

【答案】分析:(I)由等差數(shù)列{bn}滿足b1=a1=1,S5=15.求出數(shù)列的公差后,可得數(shù)列的通項公式,結合數(shù)陣中從第三行開始每行中的數(shù)按從左到右的順序均構成公比為正數(shù)的等比數(shù)列,且公比相等,a9=16,可求出公比,進而求出a50的值;
(Ⅱ)由(1)求出Sn的表達式,利用裂項相消法求出Tn的表達式,進而將不等式恒成立問題,轉化為最值問題,利用導數(shù)法,可得答案.
解答:解:(I)設等差數(shù)列{bn}的公差為d,
∵b1=1,S5=5+10d=15.
解得d=1
∴bn=n
∴b4=a7=4,
設第三行開始,每行的公比都是q,且q>0
則a9=a7•q2=4q2=16
解得q=2
又由前9行共有1+2+3+…+9=45個數(shù)
故a50是數(shù)列第10行第5個數(shù)
故a50=b10•q4=10×16=160
(II)由(I)易得Sn=1+2+…+n=
=++…+
=2(-+-+…+-
=2(-
=
令f(x)=(x≥1)
∴f′(x)=,(x≥1)
由x≥1時,f′(x)<0,故f(x)在[1,+∞)上為減函數(shù)
∴Tn隨n的增大而減小,故當n=1時Tn取最大值T1=
若不等式恒成立,
恒成立,
即t3-2mt-3>0恒成立,
令g(m)=t3-2mt-3,m∈[-1,1]


解得t<-3或t>3
點評:本題考查的知識點是等差數(shù)列,等比數(shù)列,其中(I)的關鍵求出數(shù)列的通項公式,(II)的關鍵是利用裂項相消法求出Tn的表達式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

例2.已知數(shù)列{an}的通項公式是an=
2n
3n+1
(n∈N*,n≤8)
,則下列各數(shù)是否為數(shù)列中的項?如果是,是第幾項?如果不是,為什么?(1)
3
5
(2)
11
17

查看答案和解析>>

科目:高中數(shù)學 來源:江西省贛縣中學2011屆高三適應性考試數(shù)學理科試題 題型:013

已知數(shù)列{an}的通項為an=3n+8,下列各選項中的數(shù)為數(shù)列{an}中的項的是

[  ]
A.

8

B.

16

C.

32

D.

36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

例2.已知數(shù)列{an}的通項公式是數(shù)學公式,則下列各數(shù)是否為數(shù)列中的項?如果是,是第幾項?如果不是,為什么?(1)數(shù)學公式(2)數(shù)學公式

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學復習(第6章 數(shù)列):6.1 數(shù)列定義與通項(解析版) 題型:解答題

例2.已知數(shù)列{an}的通項公式是,則下列各數(shù)是否為數(shù)列中的項?如果是,是第幾項?如果不是,為什么?(1)(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知數(shù)列{an}的通項為an=3n+8,下列各選項中的數(shù)為數(shù)列{an}中的項的是


  1. A.
    8
  2. B.
    16
  3. C.
    32
  4. D.
    36

查看答案和解析>>

同步練習冊答案