如圖1,,是某地一個湖泊的兩條互相垂直的湖堤,線段和曲線段分別是湖泊中的一座棧橋和一條防波堤.為觀光旅游的需要,擬過棧橋上某點分別修建與,平行的棧橋、,且以、為邊建一個跨越水面的三角形觀光平臺.建立如圖2所示的直角坐標系,測得線段的方程是,曲線段的方程是,設(shè)點的坐標為,記.(題中所涉及的長度單位均為米,棧橋和防波堤都不計寬度)
(1)求的取值范圍;
(2)試寫出三角形觀光平臺面積關(guān)于的函數(shù)解析式,并求出該面積的最小值
科目:高中數(shù)學 來源: 題型:解答題
作為紹興市2013年5.1勞動節(jié)系列活動之一的花卉展在鏡湖濕地公園舉行.現(xiàn)有一占地1800平方米的矩形地塊,中間三個矩形設(shè)計為花圃(如圖),種植有不同品種的觀賞花卉,周圍則均是寬為1米的賞花小徑,設(shè)花圃占地面積為平方米,矩形一邊的長為米(如圖所示)
(1)試將表示為的函數(shù);
(2)問應(yīng)該如何設(shè)計矩形地塊的邊長,使花圃占地面積取得最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知二次函數(shù)f(x)有兩個零點0和-2,且f(x)最小值是-1,函數(shù)g(x)與f(x)的圖像關(guān)于原點對稱.
(1)求f(x)和g(x)的解析式;
(2)若h(x)=f(x)-λg(x)在區(qū)間[-1,1]上是增函數(shù),求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某連鎖分店銷售某種商品,每件商品的成本為4元,并且每件商品需向總店交元(1≤a≤3)的管理費,預計當每件商品的售價為元(8≤x≤9)時,一年的銷售量為(10-x)2萬件.
(1)求該連鎖分店一年的利潤L(萬元)與每件商品的售價x的函數(shù)關(guān)系式L(x);
(2)當每件商品的售價為多少元時,該連鎖分店一年的利潤L最大,并求出L的最
大值M(a).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
森林失火了,火正以的速度順風蔓延,消防站接到報警后立即派消防員前去,在失火后到達現(xiàn)場開始救火,已知消防隊在現(xiàn)場每人每分鐘平均可滅火,所消耗的滅火材料、勞務(wù)津貼等費用每人每分鐘元,另附加每次救火所損耗的車輛、器械和裝備等費用平均每人元,而每燒毀森林的損失費為元,設(shè)消防隊派了名消防員前去救火,從到達現(xiàn)場開始救火到火全部撲滅共耗時.
(1)求出與的關(guān)系式;
(2)問為何值時,才能使總損失最。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
2013年某工廠生產(chǎn)某種產(chǎn)品,每日的成本(單位:萬元)與日產(chǎn)量(單位:噸)滿足函數(shù)關(guān)系式,每日的銷售額(單位:萬元)與日產(chǎn)量的函數(shù)關(guān)系式
已知每日的利潤,且當時,.
(1)求的值;
(2)當日產(chǎn)量為多少噸時,每日的利潤可以達到最大,并求出最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com