設F1,F(xiàn)2是橢圓的左、右兩個焦點,P是橢圓上的點,|PF1|•|PF2|=5,則cos∠F1PF2等于( )
A.
B.
C.
D.
【答案】分析:利用橢圓的定義,結合|PF1|•|PF2|=5,可得|PF1|2+|PF2|2=22,利用余弦定理即可求得cos∠F1PF2
解答:解:∵F1,F(xiàn)2是橢圓的左、右兩個焦點,P是橢圓上的點,
∴|PF1|+|PF2|=4,|F1F2|=4
∵|PF1|•|PF2|=5
∴|PF1|2+|PF2|2=22
∴cos∠F1PF2=
故選D.
點評:本題重點考查橢圓的定義,考查橢圓的焦點三角形,考查余弦定理的運用,正確運用橢圓的定義是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設F1,F(xiàn)2是橢圓的兩個焦點,F(xiàn)1F2=8,P是橢圓上的點,PF1+PF2=10,且PF1⊥PF2,則點P的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

F1、F2是橢圓的兩個焦點,P是橢圓上一點,且P到兩個焦點的距離之差為2,則△PF1F2是( 。

A.鈍角三角形                                   B.銳角三角形

C.斜三角形                                D.直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題20分,第1小題滿分4分,第2小題滿分6分,第3小題6分,第4小題4分)

         我們知道,判斷直線與圓的位置關系可以用圓心到直線的距離進行判別,那么直線與橢圓的位置關系有類似的判別方法嗎?請同學們進行研究并完成下面問題。

   (1)設F1、F2是橢圓的兩個焦點,點F1、F2到直線的距離分別為d1、d2,試求d1·d2的值,并判斷直線L與橢圓M的位置關系。

   (2)設F1、F2是橢圓的兩個焦點,點F1、F2到直線        m、n不同時為0)的距離分別為d1、d2,且直線L與橢圓M相切,試求d1·d2的值。

   (3)試寫出一個能判斷直線與橢圓的位置關系的充要條件,并證明。

   (4)將(3)中得出的結論類比到其它曲線,請同學們給出自己研究的有關結論(不必證明)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1,F(xiàn)2是橢圓的兩個焦點,以F1為圓心,且過橢圓中心的圓與橢圓的一個交點為M,若直線F2M與圓F1相切,則該橢圓的離心率是          

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年貴州省第13次月考) 題型:選擇題

設F1,F(xiàn)2是橢圓的兩個焦點,P是橢圓上的點,且

 

的面積為(   )

A.4                           B.6                          C.                     D.

 

查看答案和解析>>

同步練習冊答案