△ABC內(nèi)角A,B,C的對邊分別是a,b,c,若a,b,c成等比數(shù)列,且c=2a,求cosB的值.
分析:利用等比數(shù)列以及余弦定理即可求出cosB的值.
解答:解:由題意可知:b2=ac,c=2a(3分)
由余弦定理可得cosB=
a2+c2-b2
2ac
(6分)
=
a2+c2-ac
2ac
=
a2+(2a)2-a•2a
2a•2a
=
3
4
.(12分)
點評:本題考查余弦定理的應(yīng)用,等比數(shù)列的基本性質(zhì),考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sin2x+2cos2x+1.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)△ABC內(nèi)角A,B,C的對邊分別為a,b,c,且c=
3
,f(C)=3,若向量
m
=(sinA,-1)與向量
n
=(2,sinB)垂直,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湛江二模)如圖,已知平面上直線l1∥l2,A、B分別是l1、l2上的動點,C是l1,l2之間一定點,C到l1的距離CM=1,C到l2的距離CN=
3
,△ABC內(nèi)角A、B、C所對 邊分別為a、b、c,a>b,且bcosB=acosA
(1)判斷三角形△ABC的形狀;
(2)記∠ACM=θ,f(θ)=
1
AC
+
1
BC
,求f(θ)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinx,-1)
,
b
=(
3
cosx,-
1
2
)
,函數(shù)f(x)=(
a
+
b
)•
a
-2

(1)求函數(shù)f(x)的值域;
(2)已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,a=2
3
,且f(A)=1,求A和△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC內(nèi)角A、B、C的對邊分別為a、b、c,且c=3,C=
π
3
,若向量
m
=(1,sin A)與
n
=(2,sin B)共線.
(1)求a,b的值;
(2)求△ABC的面積和外接圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)函數(shù)f(x)=Asin(?x+φ)(其中A>0,|φ|<
π
2
)的圖象如圖所示,把函數(shù)f(x)的圖象向右平移
π
4
個單位,再向下平移1個單位,得到函數(shù)y=g(x)的圖象.
(1)若直線y=m與函數(shù)g(x)圖象在x∈[0,
π
2
]
時有兩個公共點,其橫坐標分別為x1,x2,求g(x1+x2)的值;
(2)已知△ABC內(nèi)角A、B、C的對邊分別為a、b、c,且c=3,g(C)=0.若向量
m
=(1,sinA)
n
=(2,sinB)
共線,求a、b的值.

查看答案和解析>>

同步練習冊答案