【題目】已知函數(shù)f(x)=2x+1,x∈N*.若x0,n∈N*,使f(x0)+f(x0+1)+…+f(x0+n)=63成立,則稱(x0,n)為函數(shù)f(x)的一個(gè)“生成點(diǎn)”.則函數(shù)f(x)的“生成點(diǎn)”共有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
【答案】B
【解析】2+n+1=63,即2(n+1)x0+n(n+1)+(n+1)=63,即x0=,如果x0為正整數(shù),則(n+1)2<63,即n=1,2,3,4,5,6.當(dāng)n=1時(shí),x0=,不是整數(shù);當(dāng)n=2時(shí),x0==9,點(diǎn)(9,2)為函數(shù)f(x)的一個(gè)“生成點(diǎn)”;當(dāng)n=3時(shí),x0=,不是整數(shù);當(dāng)n=4時(shí),x0=,不是整數(shù);當(dāng)n=5時(shí),x0=,不是整數(shù);當(dāng)n=6時(shí),x0==1,故(1,6)為函數(shù)f(x)的一個(gè)“生成點(diǎn)”,共2個(gè),選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高三年級(jí)有3名男生和1名女生為了報(bào)某所大學(xué),事先進(jìn)行了多方詳細(xì)咨詢,并根據(jù)自己的高考成績(jī)情況,最終估計(jì)這3名男生報(bào)此所大學(xué)的概率都是,這1名女生報(bào)此所大學(xué)的概率是.且這4人報(bào)此所大學(xué)互不影響。
(Ⅰ)求上述4名學(xué)生中報(bào)這所大學(xué)的人數(shù)中男生和女生人數(shù)相等的概率;
(Ⅱ)在報(bào)考某所大學(xué)的上述4名學(xué)生中,記為報(bào)這所大學(xué)的男生和女生人數(shù)的和,試求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某村積極開展“美麗鄉(xiāng)村生態(tài)家園”建設(shè),現(xiàn)擬在邊長(zhǎng)為1千米的正方形地塊ABCD上劃出一片三角形地塊CMN建設(shè)美麗鄉(xiāng)村生態(tài)公園,給村民休閑健身提供去處.點(diǎn)M,N分別在邊AB,AD上. (Ⅰ)當(dāng)點(diǎn)M,N分別是邊AB,AD的中點(diǎn)時(shí),求∠MCN的余弦值;
(Ⅱ)由于村建規(guī)劃及保護(hù)生態(tài)環(huán)境的需要,要求△AMN的周長(zhǎng)為2千米,請(qǐng)?zhí)骄俊螹CN是否為定值,若是,求出此定值,若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,圓,動(dòng)圓與圓外切并與圓內(nèi)切,圓心的軌跡為曲線.
(1)求的方程;
(2)是與圓,圓都相切的一條直線,與曲線交于兩點(diǎn),當(dāng)圓的半徑最長(zhǎng)時(shí),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),曲線在點(diǎn)處的切線與直線垂直.
(1)求的值;
(2)若對(duì)于任意的, 恒成立,求的取值范圍;
(3)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正方體ABCD-A1B1C1D1中,E,F分別是AB,AA1的中點(diǎn).
求證:(1)E,C,D1,F四點(diǎn)共面;
(2)CE,D1F,DA三線共點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(a>0,a≠1,m≠﹣1),是定義在(﹣1,1)上的奇函數(shù).
(I)求f(0)的值和實(shí)數(shù)m的值;
(II)當(dāng)m=1時(shí),判斷函數(shù)f(x)在(﹣1,1)上的單調(diào)性,并給出證明;
(III)若且f(b﹣2)+f(2b﹣2)>0,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的正方形中隨機(jī)投擲10 000個(gè)點(diǎn),則落入陰影部分(曲線C為正態(tài)分布
N(-1,1)的部分密度曲線)的點(diǎn)的個(gè)數(shù)的估計(jì)值為
附:若X~N(μ,σ2),則P(μ-σ<X<μ+σ)=0.682 6,P(μ-2σ<X<μ+2σ)=0.954 4.
A. 1 193 B. 1 359 C. 2 718 D. 3 413
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示, 四棱錐底面是直角梯形, 底面, 為的中點(diǎn), .
(Ⅰ)證明: ;
(Ⅱ)證明: ;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com