【題目】選修4-5:不等式選講
已知函數(shù).
(Ⅰ)解不等式: ;
(Ⅱ)當(dāng)時(shí),函數(shù)的圖象與軸圍成一個(gè)三角形,求實(shí)數(shù)的取值范圍.
【答案】(1)(2)
【解析】試題分析:(Ⅰ)由已知,可按不等中兩個(gè)絕對(duì)值式的零點(diǎn)將實(shí)數(shù)集分為三部分進(jìn)行分段求解,然后再綜合其所得解,從而求出所求不等式的解集;
(Ⅱ)由題意,可將的值分為和進(jìn)行分類討論,當(dāng)時(shí),函數(shù)不過(guò)原點(diǎn),且最小值為,此時(shí)滿足題意;當(dāng)時(shí),函數(shù),再由函數(shù)的單調(diào)性及值域,求出實(shí)數(shù)的范圍,最后綜合兩種情況,從而得出實(shí)數(shù)的范圍.
試題解析:(Ⅰ)由題意知,原不等式等價(jià)于
或或,
解得或或,
綜上所述,不等式的解集為.
(Ⅱ)當(dāng)時(shí),則 ,
此時(shí)的圖象與軸圍成一個(gè)三角形,滿足題意:
當(dāng)時(shí), ,
則函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.
要使函數(shù)的圖象與軸圍成一個(gè)三角形,
則,解得;
綜上所述,實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近期,某公交公司分別推出支付寶和微信掃碼支付乘車活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來(lái)越多的人開(kāi)始使用掃碼支付,某線路公交車隊(duì)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每一天使用掃碼支付的人次,用x表示活動(dòng)推出的天數(shù),y表示每天使用掃碼支付的人次(單位:十人次),繪制了如圖所示的散點(diǎn)圖:
(I)根據(jù)散點(diǎn)圖判斷在推廣期內(nèi),與(c,d為為大于零的常數(shù))哪一個(gè)適宜作為掃碼支付的人次y關(guān)于活動(dòng)推出天數(shù)x的回歸方程類型?(給出判斷即可,不必說(shuō)明理由)
(Ⅱ)根據(jù)(I)的判斷結(jié)果求y關(guān)于x的回歸方程,并預(yù)測(cè)活動(dòng)推出第8天使用掃碼支付的人次.
參考數(shù)據(jù):
4 | 62 | 1.54 | 2535 | 50.12 | 140 | 3.47 |
其中,
附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生喜歡校內(nèi)、校外開(kāi)展活動(dòng)的情況,某中學(xué)一課外活動(dòng)小組在學(xué)校高一年級(jí)進(jìn)行了問(wèn)卷調(diào)查,問(wèn)卷共100道題,每題1分,總分100分,該課外活動(dòng)小組隨機(jī)抽取了200名學(xué)生的問(wèn)卷成績(jī)(單位:分)進(jìn)行統(tǒng)計(jì),將數(shù)據(jù)按,,,,分成五組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為類學(xué)生,低于60分的稱為類學(xué)生.
(1)根據(jù)已知條件完成下面列聯(lián)表,能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為性別與是否為類學(xué)生有關(guān)系?
類 | 類 | 合計(jì) | |
男 | 110 | ||
女 | 50 | ||
合計(jì) |
(2)將頻率視為概率,現(xiàn)在從該校高一學(xué)生中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中類學(xué)生的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、期望和方差.
參考公式:,其中.
參考臨界值:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著科技的發(fā)展,網(wǎng)絡(luò)已逐漸融入了人們的生活.網(wǎng)購(gòu)是非常方便的購(gòu)物方式,為了了解網(wǎng)購(gòu)在我市的普及情況,某調(diào)查機(jī)構(gòu)進(jìn)行了有關(guān)網(wǎng)購(gòu)的調(diào)查問(wèn)卷,并從參與調(diào)查的市民中隨機(jī)抽取了男女各100人進(jìn)行分析,從而得到表(單位:人)
經(jīng)常網(wǎng)購(gòu) | 偶爾或不用網(wǎng)購(gòu) | 合計(jì) | |
男性 | 50 | 100 | |
女性 | 70 | 100 | |
合計(jì) |
(1)完成上表,并根據(jù)以上數(shù)據(jù)判斷能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為我市市民網(wǎng)購(gòu)與性別有關(guān)?
(2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再?gòu)倪@10人中隨機(jī)選取3人贈(zèng)送優(yōu)惠券,求選取的3人中至少有2人經(jīng)常網(wǎng)購(gòu)的概率;
②將頻率視為概率,從我市所有參與調(diào)查的市民中隨機(jī)抽取10人贈(zèng)送禮品,記其中經(jīng)常網(wǎng)購(gòu)的人數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望和方差.
參考公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】5名男生4名女生站成一排,求滿足下列條件的排法:
(1)女生都不相鄰有多少種排法?
(2)男生甲、乙、丙排序一定(只考慮位置的前后順序),有多少種排法?
(3)男甲不在首位,男乙不在末位,有多少種排法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(0<φ<π)
(1)當(dāng)φ時(shí),在給定的坐標(biāo)系內(nèi),用“五點(diǎn)法”做出函數(shù)f(x)在一個(gè)周期內(nèi)的圖象;
(2)若函數(shù)f(x)為偶函數(shù),求φ的值;
(3)在(2)的條件下,求函數(shù)在[﹣π,π]上的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,側(cè)面底面,底面為直角梯形,其中,,,,,,點(diǎn)在棱上且,點(diǎn)為棱的中點(diǎn).
在棱上且,點(diǎn)位棱的中點(diǎn).
(1)證明:平面平面;
(2)求二面角的余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的最大值;
(2)令,()其圖象上任意一點(diǎn)處切線的斜率恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng),,方程有唯一實(shí)數(shù)解,求正數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時(shí),求不等式的解集;
(2)若不等式的解集包含[–1,1],求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com