設(shè)等比數(shù)列都在函數(shù)的圖象上。

(1)求r的值;

(2)當(dāng)

(3)若對一切的正整數(shù)n,總有的取值范圍。

 

【答案】

(1)(2)(3)

【解析】

試題分析:(1)由已知可得,

當(dāng)時(shí),

是等比數(shù)列,              4分

(2)由(1)可知,

          8分

(3)

遞增,當(dāng)時(shí),取最小值為

所以一切的      12分

考點(diǎn):數(shù)列求通項(xiàng)求和

點(diǎn)評:數(shù)列求和采用的錯(cuò)位相減法,此法適用于通項(xiàng)公式為關(guān)于n的一次式與指數(shù)式的乘積形式的數(shù)列,第三問不等式恒成立轉(zhuǎn)化為求數(shù)列前n項(xiàng)和的最值,期間借助了數(shù)列的單調(diào)性

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分18分,第(1)小題4分,第2小題6分,第3小題8分)

已知點(diǎn),,…,為正整數(shù))都在函數(shù)的圖像上,其中是以1為首項(xiàng),2為公差的等差數(shù)列。

(1)求數(shù)列的通項(xiàng)公式,并證明數(shù)列是等比數(shù)列;

(2)設(shè)數(shù)列的前項(xiàng)的和,求;

(3)設(shè),當(dāng)時(shí),問的面積是否存在最大值?若存在,求出最大值;若不存在,請說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市八校區(qū)重點(diǎn)(新八校)數(shù)學(xué)試卷(解析版) 題型:解答題

已知點(diǎn)P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n為正整數(shù))都在函數(shù)的圖象上,且數(shù)列{an} 是a1=1,公差為d的等差數(shù)列.
(1)證明:數(shù)列{bn} 是等比數(shù)列;
(2)若公差d=1,以點(diǎn)Pn的橫、縱坐標(biāo)為邊長的矩形面積為cn,求最大的實(shí)數(shù)t,使(t∈R,t≠0)對一切正整數(shù)n恒成立;
(3)對(2)中的數(shù)列{an},對每個(gè)正整數(shù)k,在ak與ak+1之間插入3k-1個(gè)3(如在a1與a2之間插入3個(gè)3,a2與a3之間插入31個(gè)3,a3與a4之間插入32個(gè)3,…,依此類推),得到一個(gè)新的數(shù)列{dn},設(shè)Sn是數(shù)列{dn}的前n項(xiàng)和,試探究2008是否為數(shù)列{Sn}中的某一項(xiàng),寫出你探究得到的結(jié)論并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市八校區(qū)重點(diǎn)(新八校)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知點(diǎn)P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n為正整數(shù))都在函數(shù)的圖象上,且數(shù)列{an} 是a1=1,公差為d的等差數(shù)列.
(1)證明:數(shù)列{bn} 是公比為的等比數(shù)列;
(2)若公差d=1,以點(diǎn)Pn的橫、縱坐標(biāo)為邊長的矩形面積為cn,求最小的實(shí)數(shù)t,若使cn≤t(t∈R,t≠0)對一切正整數(shù)n恒成立;
(3)對(2)中的數(shù)列{an},對每個(gè)正整數(shù)k,在ak與ak+1之間插入2k-1個(gè)3(如在a1與a2之間插入2個(gè)3,a2與a3之間插入21個(gè)3,a3與a4之間插入22個(gè)3,…,依此類推),得到一個(gè)新的數(shù)列{dn},設(shè)Sn是數(shù)列{dn}的前n項(xiàng)和,試求S1000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市八校區(qū)重點(diǎn)(新八校)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知點(diǎn)P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n為正整數(shù))都在函數(shù)的圖象上,且數(shù)列{an} 是a1=1,公差為d的等差數(shù)列.
(1)證明:數(shù)列{bn} 是等比數(shù)列;
(2)若公差d=1,以點(diǎn)Pn的橫、縱坐標(biāo)為邊長的矩形面積為cn,求最大的實(shí)數(shù)t,使(t∈R,t≠0)對一切正整數(shù)n恒成立;
(3)對(2)中的數(shù)列{an},對每個(gè)正整數(shù)k,在ak與ak+1之間插入3k-1個(gè)3(如在a1與a2之間插入3個(gè)3,a2與a3之間插入31個(gè)3,a3與a4之間插入32個(gè)3,…,依此類推),得到一個(gè)新的數(shù)列{dn},設(shè)Sn是數(shù)列{dn}的前n項(xiàng)和,試探究2008是否為數(shù)列{Sn}中的某一項(xiàng),寫出你探究得到的結(jié)論并給出證明.

查看答案和解析>>

同步練習(xí)冊答案