(本小題12分)等差數(shù)列的前項(xiàng)和記為,已知.
(1)求數(shù)列的通項(xiàng);(2)若,求;(3)令,求數(shù)列的前項(xiàng)和
(1);(2);(3) 

試題分析:(1)由可建立關(guān)于a1和d的方程,解出a1和d的值,得到數(shù)列的通項(xiàng).(2)根據(jù)可建立關(guān)于n的方程解出n的值.
(3)因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140823/201408232352082031178.png" style="vertical-align:middle;" />,顯然應(yīng)采用錯(cuò)位相減的方法求和.
(1)由,得方程組, 
解得      .....................3分
(2)由得方程 
解得(舍去),                .....................6分
(3)                 .....................7分

           .....................9分
兩式相減得:               .....................10分

=-                   .....................12分
點(diǎn)評(píng):錯(cuò)位相減法求和主要適應(yīng)用一個(gè)等差數(shù)列與一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)的積構(gòu)成的數(shù)列,其前n項(xiàng)和可考慮錯(cuò)位相減法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)在數(shù)列中,是數(shù)列項(xiàng)和,,當(dāng)
(I)求證:數(shù)列是等差數(shù)列;
(II)設(shè)求數(shù)列的前項(xiàng)和;
(III)是否存在自然數(shù),使得對(duì)任意自然數(shù),都有成立?若存在,求出的最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(10分)已知等比數(shù)列{}的前n項(xiàng)和為, 滿(mǎn)足
均為常數(shù))
(1)求r的值;     (4分)
(2)當(dāng)b=2時(shí),記,求數(shù)列的前項(xiàng)的和.(6分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

數(shù)列的通項(xiàng)公式為,則該數(shù)列的前100項(xiàng)和為_(kāi)________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列{}中,則數(shù)列的前n項(xiàng)和最大時(shí),n的值為 (    ) 
A.8B.7或8C.8或9D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等差數(shù)列中,則等差數(shù)列的前13項(xiàng)的和為(   )
A.104B.52C.39D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S9=-36,S13=-104,等比數(shù)列{bn}中,b5=a5,b7=a7,則b6的值為
A.±4B.-4C.4D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等差數(shù)列{an}中,a1+3a8a15=120,則2a6a4的值為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

數(shù)列{an}為等比數(shù)列,且滿(mǎn)足a2007+a2010+a2016=2,a2010+a2013+a2019=6,則a2007+a2010+a2013+a2016+a2019等于( )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案