15.(Ⅰ)設(shè)函數(shù)f(x)=$\left\{{\begin{array}{l}{{{log}_{\frac{1}{2}}}x}&{x>0}\\{x+6}&{x≤0}\end{array}}$,計(jì)算f(f(-4))的值;
(Ⅱ)計(jì)算:log525+lg$\frac{1}{100}+ln\sqrt{e}+{2^{{{log}_2}1}}$;
(Ⅲ)計(jì)算:${(\frac{9}{16})^{0.5}}+{(-3)^{-1}}÷{0.75^{-2}}-{(2\frac{10}{27})^{-\;\frac{2}{3}}}$.

分析 (Ⅰ)利用函數(shù)f(x)=$\left\{{\begin{array}{l}{{{log}_{\frac{1}{2}}}x}&{x>0}\\{x+6}&{x≤0}\end{array}}$,直接計(jì)算f(f(-4))的值;
(Ⅱ)直接利用對(duì)數(shù)運(yùn)算法則化簡(jiǎn)求解log525+lg$\frac{1}{100}+ln\sqrt{e}+{2^{{{log}_2}1}}$;
(Ⅲ)利用有理指數(shù)冪的運(yùn)算法則化簡(jiǎn)求解${(\frac{9}{16})^{0.5}}+{(-3)^{-1}}÷{0.75^{-2}}-{(2\frac{10}{27})^{-\;\frac{2}{3}}}$.

解答 解:(Ⅰ)因?yàn)?4<0,所以f(-4)=-4+6=2>0----------------(1分)
所以,$f(f(-4))=f(2)={log_{\frac{1}{2}}}2=-1$.---------------(3分)
(Ⅱ)${log_5}25+lg\frac{1}{100}+ln\sqrt{e}+{2^{{{log}_2}1}}$=$2+(-2)+\frac{1}{2}+1=\frac{3}{2}$(每一項(xiàng)(1分)結(jié)論1分)--------(8分)
(Ⅲ)${(\frac{9}{16})^{0.5}}+{(-3)^{-1}}÷{0.75^{-2}}-{(2\frac{10}{27})^{-\;\frac{2}{3}}}$=$\frac{3}{4}-\frac{1}{3}÷\frac{16}{9}-\frac{9}{16}$=$\frac{3}{4}-\frac{3}{16}-\frac{9}{16}=0$; (每一項(xiàng)(1分)結(jié)論1分)---------------(13分)

點(diǎn)評(píng) 本題考查分段函數(shù)以及有理指數(shù)冪,對(duì)數(shù)運(yùn)算法則的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知一個(gè)橢圓中心在原點(diǎn),焦點(diǎn)在同一坐標(biāo)軸上,焦距為$2\sqrt{13}$.一雙曲線和這橢圓有公共焦點(diǎn),且雙曲線的實(shí)半軸長(zhǎng)比橢圓的長(zhǎng)半軸長(zhǎng)小4,雙曲線離心率與橢圓離心率之比為7:3,求橢圓和雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)F1,F(xiàn)2是雙曲線$\frac{x^2}{8}-{y^2}$=1的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上,且∠F1PF2=90°,則點(diǎn)P到x軸的距離為(  )
A.$\sqrt{7}$B.3C.$\frac{1}{3}$D.$\frac{{\sqrt{7}}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在空間四邊形ABCD中,E,F(xiàn)分別是AB,AD的中點(diǎn)
(1)求證:EF∥平面BCD
(2)若AB=AD,BC=CD,求證:AC⊥BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)函數(shù)g(x)=3x,h(x)=9x
(1)解方程:h(x)-24g(x)-h(2)=0;
(2)令$p(x)=\frac{h(x)}{h(x)+3}$,求$p(\frac{1}{2015})+p(\frac{2}{2015})+p(\frac{3}{2015})+…+p(\frac{2014}{2015})$的值;
(3)若$f(x)=\frac{g(x+1)+a}{g(x)+b}$是實(shí)數(shù)集R上的奇函數(shù),且f(h(x)-1)+f(2-k•g(x))>0對(duì)任意實(shí)數(shù)x恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知一個(gè)邊長(zhǎng)為1的正方體的每個(gè)點(diǎn)都在同一個(gè)球面上,則該球的表面積是3π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知f(x)+f(1-x)=2,an=f(0)+f($\frac{1}{n}$)+…+f($\frac{n-1}{n}$)+f(1)(n∈N*),則數(shù)列{an}的通項(xiàng)公式為(  )
A.an=n-1B.an=nC.an=n+1D.an=n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知具有線性相關(guān)的兩個(gè)變量x,y之間的一組數(shù)據(jù)如表:
x01234
y2.24.3t4.86.7
且回歸方程是$\widehat{y}$=0.95x+2.6,則t=( 。
A.4.7B.4.6C.4.5D.4.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.己知命題P:數(shù)f(x)=ax+1在區(qū)間(-∞,+∞)上單調(diào)遞增.Q:對(duì)任意實(shí)數(shù)x都有x2-ax+4>0恒成立,若“P或Q”為真,“P且Q”為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案