公差不為零的等差數(shù)列{an}中,a3=7,又a2,a4,a9成等比數(shù)列.
(1)求數(shù)列{an}的通項公式.
(2)設數(shù)學公式,求數(shù)列{bn}的前n項和Sn

解:(1)設數(shù)列的公差為d,則
∵a3=7,又a2,a4,a9成等比數(shù)列.
∴(7+d)2=(7-d)(7+6d)
∴d2=3d
∵d≠0
∴d=3
∴an=7+(n-3)×3=3n-2
即an=3n-2;
(2)∵,∴

∴數(shù)列{bn}是等比數(shù)列,

∴數(shù)列{bn}的前n項和Sn=
分析:(1)設數(shù)列的公差為d,根據(jù)a3=7,又a2,a4,a9成等比數(shù)列,可得(7+d)2=(7-d)(7+6d),從而可得d=3,進而可求數(shù)列{an}的通項公式;
(2)先確定數(shù)列{bn}是等比數(shù)列,進而可求數(shù)列{bn}的前n項和Sn
點評:本題考查等差數(shù)列與等比數(shù)列的綜合,考查等差數(shù)列的通項,等比數(shù)列的求和公式,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

公差不為零的等差數(shù)列的第1項、第6項、第21項恰好構(gòu)成等比數(shù)列,則它的公比為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•北京模擬)如果公差不為零的等差數(shù)列的第二、第三、第六項構(gòu)成等比數(shù)列,那么其公比為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是公差不為零的等差數(shù)列,a1=1,且a1,a3,a9成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項;
(Ⅱ)令bn=
1
(an+1)2-1
(n∈N*)
,數(shù)列{bn}的前n項和Tn,證明:Tn
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是公差不為零的等差數(shù)列,數(shù)列{bn}為等比數(shù)列,若b1=a1,b2=a5,b3=a17,則b4等于數(shù)列{an}中的第
53
53
項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•武昌區(qū)模擬)已知公差不為零的等差數(shù)列{an}的前n項和為Sn,點(n,Sn)都在二次函數(shù)y=f(x)的圖象上(如圖).已知函數(shù)y=f(x)的圖象的對稱軸方程是x=
3
2
.若點(n,an)在函數(shù)y=g(x)的圖象上,則函數(shù)y=g(x)的圖象可能是( 。

查看答案和解析>>

同步練習冊答案