設(shè)m,n,t為正數(shù),且P=
m2+mn+n2
,Q=
n2+nt+t2
,S=m+n+t
,則(  )
A、Q+S>P
B、P+Q>S
C、P+S>Q
D、P+Q=S
分析:將P,Q配方,根據(jù)
3
4
n2> 0   
3
4
t2>0
得到P>m+
1
2
n
,Q>n+
1
2
t
,兩不等式相加即可.
解答:解:∵P=
m2+mn+n2
=
(m+
1
2
n)
2
+
3
4
n2 
>m+
1
2
n

Q=
n2+nt+t2
=
(n+
1
2
t)
2
+
3
4
t2
>n+
1
2
t

∴P+Q>S
故選B
點(diǎn)評(píng):本題考查比較兩個(gè)數(shù)的大小,通過(guò)配方,利用一個(gè)數(shù)的平方為正,化簡(jiǎn)各數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{xn}的所有項(xiàng)都是不等于1的正數(shù),前n項(xiàng)和為Sn,已知點(diǎn)Pn(xn,Sn)在直線y=kx+b上,(其中,常數(shù)k≠0,且k≠1),又yn=log0.5xn
(1)求證:數(shù)列{xn}是等比數(shù)列;
(2)如果yn=18-3n,求實(shí)數(shù)k,b的值;
(3)如果存在t,s∈N*,s≠t,使得點(diǎn)(t,ys)和(s,yt)都在直線y=2x+1上,試判斷,是否存在自然數(shù)M,當(dāng)n>M時(shí),xn>1恒成立?若存在,求出M的最小值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•濰坊一模)已知數(shù)列{an}的各項(xiàng)排成如圖所示的三角形數(shù)陣,數(shù)陣中每一行的第一個(gè)數(shù)a1,a2,a4,a7,…構(gòu)成等差數(shù)列{bn},Sn是{bn}的前n項(xiàng)和,且b1=a1=1,S5=15.
( I )若數(shù)陣中從第三行開(kāi)始每行中的數(shù)按從左到右的順序均構(gòu)成公比為正數(shù)的等比數(shù)列,且公比相等,已知a9=16,求a50的值;
(Ⅱ)設(shè)Tn=
1
Sn+1
+
1
Sn+2
+…+
1
S2n
,當(dāng)m∈[-1,1]時(shí),對(duì)任意n∈N*,不等式t3-2mt-
8
3
Tn
恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省泰州市泰興三中高三數(shù)學(xué)調(diào)研試卷(解析版) 題型:解答題

設(shè)數(shù)列{xn}的所有項(xiàng)都是不等于1的正數(shù),前n項(xiàng)和為Sn,已知點(diǎn)Pn(xn,Sn)在直線y=kx+b上,(其中,常數(shù)k≠0,且k≠1),又yn=log0.5xn
(1)求證:數(shù)列{xn}是等比數(shù)列;
(2)如果yn=18-3n,求實(shí)數(shù)k,b的值;
(3)如果存在t,s∈N*,s≠t,使得點(diǎn)(t,ys)和(s,yt)都在直線y=2x+1上,試判斷,是否存在自然數(shù)M,當(dāng)n>M時(shí),xn>1恒成立?若存在,求出M的最小值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高三數(shù)學(xué)復(fù)習(xí)(第5章 不等式):5.5 不等式的證明——其它方法(1)(解析版) 題型:選擇題

設(shè)m,n,t為正數(shù),且,則( )
A.Q+S>P
B.P+Q>S
C.P+S>Q
D.P+Q=S

查看答案和解析>>

同步練習(xí)冊(cè)答案