如圖,已知點(diǎn)P(3,0),點(diǎn)A,B分別在x軸負(fù)半軸和y軸上,且 當(dāng)點(diǎn)B在y軸上移動(dòng)時(shí)記點(diǎn)C的軌跡為E.(Ⅰ)求曲線E的方程;(Ⅱ)已知向量為方向向量的直線l交曲線E于不同的兩點(diǎn)M,N,若D(-1,0),的取值范圍.

(Ⅰ)(Ⅱ)


解析:

:(Ⅰ)設(shè)A(a,0)(a<0), B(0,b), C(x,y).

  ∵

  …………3分

消去a,b得y2=-4x   

故曲線E的方程為  …………2分

(Ⅱ)設(shè)R(x,y)為直線l上一點(diǎn),由條件知

 消去的方程為 …………2分

 …………(*)

∵直線l交曲線E于不同的兩點(diǎn)M、N,

  …………①  …………2分

設(shè)

∵M(jìn)、N在上,  ∴

又由(*),有

由條件知  …………②  ……3分

解①、②組成的不等式組得:  ……1分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)P是正方形ABCD所在平面外一點(diǎn),PA⊥平面ABCD,PA=AB,點(diǎn)E、F分別在線段PB、AC上,滿足BE=CF.
(1)求PD與平面ABCD所成的角的大小;
(2)求平面PBD與平面ABCD所成角的正切值.
(3)求證:EF⊥CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•盧灣區(qū)二模)如圖,已知點(diǎn)H(-3,0),動(dòng)點(diǎn)P在y軸上,點(diǎn)Q在x軸上,其橫坐標(biāo)不小于零,點(diǎn)M在直線PQ上,且滿足
HP
PM
=0
,
PM
=-
3
2
MQ

(1)當(dāng)點(diǎn)P在y軸上移動(dòng)時(shí),求點(diǎn)M的軌跡C;
(2)過(guò)定點(diǎn)F(1,0)作互相垂直的直線l與l',l與(1)中的軌跡C交于A、B兩點(diǎn),l'與(1)中的軌跡C交于D、E兩點(diǎn),求四邊形ADBE面積S的最小值;
(3)(在下列兩題中,任選一題,寫(xiě)出計(jì)算過(guò)程,并求出結(jié)果,若同時(shí)選做兩題,
則只批閱第②小題,第①題的解答,不管正確與否,一律視為無(wú)效,不予批閱):
①將(1)中的曲線C推廣為橢圓:
x2
2
+y2=1
,并
將(2)中的定點(diǎn)取為焦點(diǎn)F(1,0),求與(2)相類(lèi)似的問(wèn)題的解;
②(解答本題,最多得9分)將(1)中的曲線C推廣為橢圓:
x2
a2
+
y2
b2
=1
,并
將(2)中的定點(diǎn)取為原點(diǎn),求與(2)相類(lèi)似的問(wèn)題的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•盧灣區(qū)二模)如圖,已知點(diǎn)H(-3,0),動(dòng)點(diǎn)P在y軸上,點(diǎn)Q在x軸上,其橫坐標(biāo)不小于零,點(diǎn)M在直線PQ上,且滿足
HP
PM
=0
PM
=-
3
2
MQ

(1)當(dāng)點(diǎn)P在y軸上移動(dòng)時(shí),求點(diǎn)M的軌跡C;
(2)過(guò)定點(diǎn)F(1,0)作互相垂直的直線l與l',l與(1)中的軌跡C交于A、B兩點(diǎn),l'與(1)中的軌跡C交于D、E兩點(diǎn),求四邊形ADBE面積S的最小值;
(3)將(1)中的曲線C推廣為橢圓:
x2
2
+y2=1
,并將(2)中的定點(diǎn)取為焦點(diǎn)F(1,0),求與(2)相類(lèi)似的問(wèn)題的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年重慶市高二下學(xué)期檢測(cè)數(shù)學(xué)試卷 題型:解答題

  如圖,已知點(diǎn)P是三角形ABC外一點(diǎn),且底面

,點(diǎn),分別在棱上,且 。  。 

(1)求證:平面

(2)當(dāng)的中點(diǎn)時(shí),求與平面所成的角的大;

(3)是否存在點(diǎn)使得二面角為直二面角?并說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案