如圖,PB為圓O的切線,B為切點,連接PO交圓O于點A,PA=2,PO=5,則PB的長為


  1. A.
    4
  2. B.
    數(shù)學公式
  3. C.
    2數(shù)學公式
  4. D.
    數(shù)學公式
A
分析:欲求PB的長,可根據(jù)切線的性質連接OB,構造直角△POB,從而利用勾股定理求解.
解答:解:連接OB,則OB⊥PB,
在Rt△POB中,
OB=OA=PO-AP=3,PO=5,
∴PB==4.
故選A.
點評:此題主要考查圓的切線的性質定理的證明、切線的性質及直角三角形的勾股定理.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

選做題:請考生在下列兩題中任選一題作答,若兩題都做,則按所做的第一題評閱計分.
(1)(坐標系與參數(shù)方程選做題) 在極坐標系下,已知直線l的方程為ρcos(θ-
π
3
)=
1
2
,則點M(1,
π
2
)到直線l的距離為
3
-1
2
3
-1
2

(2)(幾何證明選講選做題) 如圖,P為圓O外一點,由P引圓O的切線PA與圓O切于A點,引圓O的割線PB與圓O交于C點.已知AB⊥AC,PA=2,PC=1.則圓O的面積為
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•佛山一模)如圖,P為圓O外一點,由P引圓O的切線PA與圓O切于A點,引圓O的割線PB與圓O交于C點.已知AB⊥AC,PA=2,PC=1,則圓O的面積為
4
4

查看答案和解析>>

科目:高中數(shù)學 來源:2012年廣東省佛山市高考數(shù)學一模試卷(文科)(解析版) 題型:填空題

如圖,P為圓O外一點,由P引圓O的切線PA與圓O切于A點,引圓O的割線PB與圓O交于C點.已知AB⊥AC,PA=2,PC=1,則圓O的面積為   

查看答案和解析>>

科目:高中數(shù)學 來源:2012年廣東省佛山市高考數(shù)學一模試卷(理科)(解析版) 題型:填空題

如圖,P為圓O外一點,由P引圓O的切線PA與圓O切于A點,引圓O的割線PB與圓O交于C點.已知AB⊥AC,PA=2,PC=1,則圓O的面積為   

查看答案和解析>>

科目:高中數(shù)學 來源:2012年湖北省武漢市高三四月調考數(shù)學試卷(理科)(解析版) 題型:解答題

如圖,P為圓O外一點,由P引圓O的切線PA與圓O切于A點,引圓O的割線PB與圓O交于C點.已知AB⊥AC,PA=2,PC=1,則圓O的面積為   

查看答案和解析>>

同步練習冊答案