在圖的程序框圖中,輸出的s的值為( )

A.12
B.14
C.15
D.20
【答案】分析:首先分析程序框圖,循環(huán)體為“直到“循環(huán)結構,按照循環(huán)結構進行運算,求出滿足題意時的S.
解答:解:根據(jù)題意,本程序框圖為求S的值循環(huán)體為“直到“循環(huán)結構
第1次循環(huán):i=4           S=5
第2次循環(huán):i=3          S=9
第3次循環(huán):i=2           S=12
第4次循環(huán):i=1           S=14
第5次循環(huán):i=0           S=15
此時i=0,不滿足條件,跳出循環(huán),輸出S=15
故選C.
點評:本題為程序框圖題,考查對循環(huán)結構的理解和認識,按照循環(huán)結構運算后得出結果.屬于基礎題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

甲、乙兩同學進行下棋比賽,約定每局勝者得1分,負者得0分(無平局),比賽進行到有一個人比對方多2分或比滿8局時停止,設甲在每局中獲勝的概率為p(p>
1
2
)
,且各局勝負相互獨立.已知第二局比賽結束時比賽停止的概率為
5
8

(I)如圖為統(tǒng)計這次比賽的局數(shù)n和甲、乙的總得分S,T的程序框圖.其中如果甲獲勝,輸人a=l.b=0;如果乙獲勝,則輸人a=0,b=1.請問在①②兩個判斷框中應分別填寫什么條件?
(Ⅱ)求p的值;
(Ⅲ)設ξ表示比賽停止時已比賽的局數(shù),求隨機變量ξ的分布列和Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年河南省高三高考適應性測試理科數(shù)學試卷(解析版) 題型:解答題

甲、乙兩同學進行下棋比賽,約定每局勝者得1分,負者得0分(無平局),比賽進行到有一個人比對方多2分或比滿8局時停止,設甲在每局中獲勝的概率為,且各局勝負相互獨立.已知第二局比賽結束時比賽停止的概率為

                        (I)如右圖為統(tǒng)計這次比賽的局數(shù)n和甲、乙的總得分S,T的程序框圖.其中如果甲獲勝,輸人a=l.b=0;如果乙獲勝,則輸人a=0,b=1.請問在①②兩個判斷框中應分別填寫什么條件?

                        (Ⅱ)求p的值;

    (Ⅲ)設表示比賽停止時已比賽的局數(shù),求隨機變量的分布列和

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012年河南省普通高中畢業(yè)班高考適應性測試數(shù)學試卷(理科)(解析版) 題型:解答題

甲、乙兩同學進行下棋比賽,約定每局勝者得1分,負者得0分(無平局),比賽進行到有一個人比對方多2分或比滿8局時停止,設甲在每局中獲勝的概率為,且各局勝負相互獨立.已知第二局比賽結束時比賽停止的概率為
(I)如圖為統(tǒng)計這次比賽的局數(shù)n和甲、乙的總得分S,T的程序框圖.其中如果甲獲勝,輸人a=l.b=0;如果乙獲勝,則輸人a=0,b=1.請問在①②兩個判斷框中應分別填寫什么條件?
(Ⅱ)求p的值;
(Ⅲ)設ξ表示比賽停止時已比賽的局數(shù),求隨機變量ξ的分布列和Eξ.

查看答案和解析>>

同步練習冊答案