已知Cn+12-Cn2=Cn3,則n的值為_(kāi)_______.

4
分析:本題中給的是一個(gè)關(guān)于組合數(shù)的方程,利用組合數(shù)公式展開(kāi)成關(guān)于n的方程,解方程求n
解答:∵Cn+12-Cn2=Cn3
-=
∴3n+3-3n+3=n2-3n+2
∴n2-3n-4=0
解得n=4
故答案為:4.
點(diǎn)評(píng):本題考查組合及組合數(shù)公式,解題的關(guān)鍵是熟練掌握組合數(shù)公式,能用公式將方程化簡(jiǎn)為一元二次方程
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列an中,公差d>0,其前n項(xiàng)和為Sn,且滿足a2•a3=45,a1+a4=14.
(1)求數(shù)列an的通項(xiàng)公式;
(2)設(shè)由bn=
Sn
n+c
(c≠0)構(gòu)成的新數(shù)列為bn,求證:當(dāng)且僅當(dāng)c=-
1
2
時(shí),數(shù)列bn是等差數(shù)列;
(3)對(duì)于(2)中的等差數(shù)列bn,設(shè)cn=
8
(an+7)•bn
(n∈N*),數(shù)列cn的前n項(xiàng)和為Tn,現(xiàn)有數(shù)列f(n),f(n)=
2bn
an-2
-Tn
(n∈N*),
求證:存在整數(shù)M,使f(n)≤M對(duì)一切n∈N*都成立,并求出M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知遞增等比數(shù)列{bn}滿足b2•b4=64,b5=32,數(shù)列{an}滿足an-bn=
1
2n

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{cn}的通項(xiàng)公式cn=nan-
1
2
,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正方形ABCD的邊長(zhǎng)為1,過(guò)正方形中心O的直線MN分別交正方形的邊AB,CD于M,N,則當(dāng)
MN
BN
最小時(shí),CN=
5
-1
2
5
-1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知Sn=2an-2n+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令 bn=
1
(n+1)
1
8n
an
.用數(shù)學(xué)歸納法證明:(1-b1)(1-b2)…(1-bn)≥1-(b1+b2+…+bn);
(3)設(shè)cn=log
an
n+1
2
,數(shù)列{cn}的前n項(xiàng)和為Cn,若存在整數(shù)m,使對(duì)任意n∈N*且n≥2,都有C3n-Cn
m
20
成立,求m的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案